Liouville-type theorems for nonlinear degenerate parabolic equation

被引:0
|
作者
Quoc Hung Phan [1 ]
机构
[1] Duy Tan Univ, Inst Res & Dev, Da Nang, Vietnam
关键词
Degenerate parabolic equation; Nonexistence; Liouville-type theorem; p-Laplacian; LINEAR ELLIPTIC-EQUATIONS; POROUS-MEDIUM EQUATION; P-LAPLACIAN EQUATIONS; SUPERLINEAR PROBLEMS; RADIAL SOLUTIONS; CAUCHY-PROBLEM; BLOW-UP; SINGULARITY; SYSTEMS; DECAY;
D O I
10.1007/s00028-015-0311-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Liouville-type theorems for degenerate parabolic equation of the form where and . We prove the optimal Liouville-type results in dimension , and for radial solutions in any dimension. We also provide some partial results for non-radial solutions in dimension . Our proofs are based on a generalized Gidas-Spruck technique, combined with the idea of Serrin and Zou (Acta Math 189(1):79-142, 2002) and of Bidaut-V,ron (Aequations aux d,riv,es partielles et applications. Elsevier, Paris, pp 189-198, 1998). Finally, we clarify and correct some of the previous results on this topic.
引用
下载
收藏
页码:519 / 537
页数:19
相关论文
共 50 条
  • [21] Liouville type theorems for degenerate parabolic systems with advection terms
    Vu Trong Luong
    Duc Hiep Pham
    Hien Anh Vu Thi
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) : 871 - 882
  • [22] Liouville-Type Theorems for Steady Flows of Degenerate Power Law Fluids in the Plane
    Bildhauer, Michael
    Fuchs, Martin
    Zhang, Guo
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (03) : 583 - 616
  • [23] Liouville-type theorems for a system governed by degenerate elliptic operators of fractional orders
    Jleli M.
    Samet B.
    Arabian Journal of Mathematics, 2017, 6 (3) : 201 - 211
  • [24] Liouville-Type Theorems for Steady Flows of Degenerate Power Law Fluids in the Plane
    Michael Bildhauer
    Martin Fuchs
    Guo Zhang
    Journal of Mathematical Fluid Mechanics, 2013, 15 : 583 - 616
  • [25] Liouville-type theorems for a quasilinear elliptic equation of the Hénon-type
    Quoc Hung Phan
    Anh Tuan Duong
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 1817 - 1829
  • [26] Liouville-type theorems for a quasilinear elliptic equation of the H,non-type
    Quoc Hung Phan
    Anh Tuan Duong
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2015, 22 (06): : 1817 - 1829
  • [27] Liouville-type theorems for polyhannonic systems in RN
    Liu, Jiaqun
    Guo, Yuxia
    Zhang, Yajing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 225 (02) : 685 - 709
  • [28] COUNTER-EXAMPLES FOR LIOUVILLE-TYPE THEOREMS
    KUZMENKO, YT
    MOLCANOV, SA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1979, (06): : 39 - 43
  • [29] LIOUVILLE-TYPE THEOREMS FOR SEMILINEAR ELLIPTIC SYSTEMS
    Zhang Zhengce
    Wang Weimin
    Li Kaitai
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2005, 18 (04): : 304 - 310
  • [30] LIOUVILLE-TYPE THEOREMS FOR FUNCTIONS OF FINITE ORDER
    Khabibullin, B. N.
    UFA MATHEMATICAL JOURNAL, 2020, 12 (04): : 114 - 118