Application of neural network in suppressing mechanical vibration of a permanent magnet linear motor

被引:28
|
作者
Yousefi, Hassan [1 ]
Hirvonen, Markus [1 ]
Handroos, Heikki [1 ]
Soleymani, Azita [2 ]
机构
[1] Lappeenranta Univ Technol, Dept Mech Engn, Inst Mechatron & Virtual Engn, FIN-53851 Lappeenranta, Finland
[2] Lappeenranta Univ Technol, Dept Chem Technol, FIN-53851 Lappeenranta, Finland
关键词
neural networks; genetic algorithms; velocity control; linear motors; Kalman filters;
D O I
10.1016/j.conengprac.2007.08.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a recurrent neural network compensator for suppressing inechanical vibration in a permanent magnet linear synchronous motor (PMLSM) is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system, respectively. The proposed control method is firstly designed by using a nonlinear simulation model built in Matlab Sitmulink and then implemented in a practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 797
页数:11
相关论文
共 50 条
  • [21] Analysis of Electromagnetic Vibration Characteristics of Transverse Flux Permanent Magnet Linear Motor
    Zhao M.
    Zhao J.
    Zuo S.
    Yu G.
    Zhang H.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (01): : 168 - 181
  • [22] Recurrent and Feedforward Neural Network Control of Permanent Magnet Synchronous Motor
    Gaur, Prerna
    Mittal, A. P.
    Singh, Bhim
    IETE JOURNAL OF RESEARCH, 2011, 57 (06) : 541 - 549
  • [23] Neural network adaptive control algorithm for permanent magnet spherical motor
    Liu, Jingmeng
    Liu, Yan
    Chen, Weihai
    Zhang, Liang
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (01): : 25 - 30
  • [24] Neural network vector control of a permanent magnet synchronous motor drive
    Wang, Jian
    Wang, Honghua
    Zhang, Xueqin
    Wang, Jiangtao
    ICIEA 2008: 3RD IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, PROCEEDINGS, VOLS 1-3, 2008, : 542 - +
  • [25] Adaptive Neural Network Control Of Chaos In Permanent Magnet Synchronous Motor
    Aguilar-Mejia, Omar
    Tapia-Olvera, Ruben
    Valderrabano-Gonzalez, Antonio
    Rivas Cambero, Ivan
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2016, 22 (03): : 499 - 507
  • [26] A Novel Permanent Magnet Linear Motor for the Application of Electromagnetic Launch System
    Deng, Cong
    Ye, Caiyong
    Yang, Jiangtao
    Yu, Dezuan
    Sun, Songjun
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2020, 30 (04)
  • [27] A Stepping out Prevention Strategy For Permanent Magnet Linear Motor Based on Genetic and Fuzzy Neural Network Algorithm
    Wang, Fuzhong
    Gao, Caixia
    Zhang, Zhan
    JOURNAL OF COMPUTERS, 2013, 8 (09) : 2421 - 2428
  • [28] Robust Backstepping Control of Permanent Magnet Linear Synchronous Motor in Extended Region Using Artificial Neural Network
    Maleknia, Ahmad Reza
    Rahimi, Khalil
    Zarchi, Hossein Abootorabi
    Soltani, Jafar
    2008 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-5, 2008, : 1444 - +
  • [29] Adaptive Neural Network Nonsingular Fast Terminal Sliding Mode Control for Permanent Magnet Linear Synchronous Motor
    Zhao, Ximei
    Fu, Dongxue
    IEEE ACCESS, 2019, 7 : 180361 - 180372
  • [30] H∞ robust controller based on local feedback recurrent neural network for permanent magnet linear synchronous motor
    Yang, Junyou
    Fa, Naiguang
    Chen, Ruijuan
    IPEMC 2006: CES/IEEE 5TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-3, CONFERENCE PROCEEDINGS, 2006, : 1253 - +