Functional characterization of somatic mutations in cancer using network-based inference of protein activity

被引:496
|
作者
Alvarez, Mariano J. [1 ,2 ]
Shen, Yao [1 ,2 ]
Giorgi, Federico M. [1 ]
Lachmann, Alexander [1 ]
Ding, B. Belinda [3 ]
Ye, B. Hilda [3 ]
Califano, Andrea [1 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Columbia Univ, Dept Syst Biol, New York, NY 10027 USA
[2] DarwinHealth Inc, New York, NY 11040 USA
[3] Albert Einstein Coll Med, Dept Cell Biol, New York, NY USA
[4] Columbia Univ, Dept Biomed Informat, New York, NY 10027 USA
[5] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10027 USA
[6] Columbia Univ, Inst Canc Genet, New York, NY 10027 USA
[7] Columbia Univ, Motor Neuron Ctr, New York, NY 10027 USA
[8] Columbia Univ, Columbia Initiat Stem Cells, New York, NY 10027 USA
基金
美国国家卫生研究院;
关键词
GENE SET ENRICHMENT; TRANSCRIPTION FACTOR ACTIVITY; DIFFERENTIAL EXPRESSION; REGULATORY PROGRAMS; SMALL MOLECULES; PATHWAYS; IDENTIFICATION; PROGRESSION; DISEASE;
D O I
10.1038/ng.3593
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Identifying the multiple dysregulated oncoproteins that contribute to tumorigenesis in a given patient is crucial for developing personalized treatment plans. However, accurate inference of aberrant protein activity in biological samples is still challenging as genetic alterations are only partially predictive and direct measurements of protein activity are generally not feasible. To address this problem we introduce and experimentally validate a new algorithm, virtual inference of protein activity by enriched regulon analysis ( VIPER), for accurate assessment of protein activity from gene expression data. We used VIPER to evaluate the functional relevance of genetic alterations in regulatory proteins across all samples in The Cancer Genome Atlas ( TCGA). In addition to accurately infer aberrant protein activity induced by established mutations, we also identified a fraction of tumors with aberrant activity of druggable oncoproteins despite a lack of mutations, and vice versa. In vitro assays confirmed that VIPER-inferred protein activity outperformed mutational analysis in predicting sensitivity to targeted inhibitors.
引用
收藏
页码:838 / +
页数:13
相关论文
共 50 条
  • [41] Network-based global inference of human disease genes
    Wu, Xuebing
    Jiang, Rui
    Zhang, Michael Q.
    Li, Shao
    MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)
  • [42] Adaptive Network-Based Quantum Fuzzy Inference System
    Yan L.
    Yan J.
    Zhang S.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2023, 52 (04): : 482 - 488
  • [43] Probabilistic program inference in network-based epidemiological simulations
    Smedemark-Margulies, Niklas
    Walters, Robin
    Zimmermann, Heiko
    Laird, Lucas
    van der Loo, Christian
    Kaushik, Neela
    Caceres, Rajmonda
    van de Meent, Jan-Willem
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (11)
  • [44] Network-Based Inference Framework for Identifying Cancer Genes from Gene Expression Data
    Yang, Bo
    Zhang, Junying
    Yin, Yaling
    Zhang, Yuanyuan
    BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [45] IDENTIFYING FUNCTIONAL NONCODING SOMATIC MUTATIONS IN OVARIAN CANCER
    Corona, Rosario I.
    Seo, Ji-Heui
    Hazelett, Dennis J.
    Lin, Xianzhi
    Mhawech-Fauceglia, Paulette Y.
    Lester, Jenny
    Shah, Sohrab P.
    Huntsman, David G.
    Karlan, Beth Y.
    Gusev, Alexander
    Berman, Benjamin P.
    Freedman, Matthew L.
    Gayther, Simon A.
    Lawrenson, Kate
    CLINICAL CANCER RESEARCH, 2019, 25 (22) : 68 - 68
  • [46] Netmes: Assessing Gene Network Inference Algorithms by Network-Based Measures
    Altay, Gokmen
    Kurt, Zeyneb
    Dehmer, Matthias
    Emmert-Streib, Frank
    EVOLUTIONARY BIOINFORMATICS, 2014, 10 : 1 - 9
  • [47] SomaticNET: Neural network evaluation of somatic mutations in cancer
    Dubourg-Felonneau, G.
    Rebergen, D.
    Parsons, C.
    Thompson, H.
    Cassidy, J. W.
    Patel, N.
    Clifford, H. W.
    ANNALS OF ONCOLOGY, 2019, 30 : 584 - 584
  • [48] Strapdown fiber optic gyrocompass using adaptive network-based fuzzy inference system
    Li, Qian
    Ben, Yueyang
    Sun, Feng
    OPTICAL ENGINEERING, 2014, 53 (01)
  • [49] Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system
    Rankovic, Vesna
    Radulovic, Jasna
    Radojevic, Ivana
    Ostojic, Aleksandar
    Comic, Ljiljana
    JOURNAL OF HYDROINFORMATICS, 2012, 14 (01) : 167 - 179
  • [50] Irrigation water quality evaluation using adaptive network-based fuzzy inference system
    N. Alavi
    V. Nozari
    S. M. Mazloumzadeh
    H. Nezamabadi-pour
    Paddy and Water Environment, 2010, 8 : 259 - 266