Relevance of packing to colloidal self-assembly

被引:55
|
作者
Cersonsky, Rose K. [1 ]
van Anders, Greg [2 ,3 ]
Dodd, Paul M. [2 ]
Glotzer, Sharon C. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
packing; assembly; colloids; shape entropy; digital alchemy; FREE-ENERGY; ENTROPY; PATCHINESS; POLYHEDRA; BEHAVIOR; RULES;
D O I
10.1073/pnas.1720139115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the 1920s, packing arguments have been used to rationalize crystal structures in systems ranging from atomic mixtures to colloidal crystals. Packing arguments have recently been applied to complex nanoparticle structures, where they often, but not always, work. We examine when, if ever, packing is a causal mechanism in hard particle approximations of colloidal crystals. We investigate three crystal structures composed of their ideal packing shapes. We show that, contrary to expectations, the ordering mechanism cannot be packing, even when the thermodynamically self-assembled structure is the same as that of the densest packing. We also show that the best particle shapes for hard particle colloidal crystals at any finite pressure are imperfect versions of the ideal packing shape.
引用
下载
收藏
页码:1439 / 1444
页数:6
相关论文
共 50 条
  • [31] Self-assembly of colloidal pyramids in magnetic fields
    Helseth, LE
    LANGMUIR, 2005, 21 (16) : 7276 - 7279
  • [32] Self-assembly of perovskite nanoplates in colloidal suspensions
    Moral, Raphael F.
    Malfatti-Gasperini, Antonio A.
    Bonato, Luiz G.
    Vale, Brener R. C.
    Fonseca, Andre F. V.
    Padilha, Lazaro A.
    Oliveira, Cristiano L. P.
    Nogueira, Ana F.
    MATERIALS HORIZONS, 2023, 10 (12) : 5822 - 5834
  • [33] Self-assembly of colloidal micelles in microfluidic channels
    Nikoubashman, Arash
    SOFT MATTER, 2017, 13 (01) : 222 - 229
  • [34] Colloidal Self-Assembly Concepts for Plasmonic Metasurfaces
    Mayer, Martin
    Schnepf, Max J.
    Koenig, Tobias A. F.
    Fery, Andreas
    ADVANCED OPTICAL MATERIALS, 2019, 7 (01)
  • [35] Patchy colloidal particles for programmed self-assembly
    Duguet, Etienne
    Hubert, Celine
    Chomette, Cyril
    Perro, Adeline
    Ravaine, Serge
    COMPTES RENDUS CHIMIE, 2016, 19 (1-2) : 173 - 182
  • [36] Phoretic self-assembly of active colloidal molecules
    雷李杰
    王硕
    张昕源
    赖文杰
    吴晋宇
    高永祥
    Chinese Physics B, 2021, 30 (05) : 507 - 512
  • [37] Optimal Design of a Colloidal Self-Assembly Process
    Xue, Yuzhen
    Beltran-Villegas, Daniel J.
    Tang, Xun
    Bevan, Michael A.
    Grover, Martha A.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (05) : 1956 - 1963
  • [38] Directed self-assembly of a colloidal kagome lattice
    Chen, Qian
    Bae, Sung Chul
    Granick, Steve
    NATURE, 2011, 469 (7330) : 381 - 384
  • [39] Controlled self-assembly of colloidal cobalt nanocrystals
    Bao, YP
    Beerman, M
    Krishnan, KM
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 266 (03) : L245 - L249
  • [40] Magnetically tunable self-assembly of colloidal rings
    Li, Kwan H.
    Yellen, Benjamin B.
    APPLIED PHYSICS LETTERS, 2010, 97 (08)