Asymptotically optimal shrinkage estimates for non-normal data

被引:1
|
作者
Withers, Christopher S. [2 ]
Nadarajah, Saralees [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
[2] Ind Res Ltd, Appl Math Grp, Lower Hutt, New Zealand
关键词
multiple shrinkage estimates; Stein estimate; JAMES-STEIN ESTIMATOR;
D O I
10.1080/00949655.2010.515592
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Motivated by several practical issues, we consider the problem of estimating the mean of a p-variate population (not necessarily normal) with unknown finite covariance. A quadratic loss function is used. We give a number of estimators (for the mean) with their loss functions admitting expansions to the order of p(-1/2) as p -> infinity. These estimators contain Stein's [Inadmissibility of the usual estimator for the mean of a multivariate normal population, in Proceedings of the Third Berkeley Symposium in Mathematical Statistics and Probability, Vol. 1, J. Neyman, ed., University of California Press, Berkeley, 1956, pp. 197-206] estimate as a particular case and also contain 'multiple shrinkage' estimates improving on Stein's estimate. Finally, we perform a simulation study to compare the different estimates.
引用
收藏
页码:2021 / 2037
页数:17
相关论文
共 50 条
  • [31] Modelinb non-normal data using statistical software
    Minitab, Inc.
    [J]. Read R D Community, 2007, 8 (26-27):
  • [32] Distance-Based Regression for Non-Normal Data
    Haron, Nor Hisham
    Ahad, Nor Aishah
    Mahat, Nor Idayu
    [J]. 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019), 2019, 2138
  • [33] STATISTICAL BRIEFING: SUMMARIZING NON-NORMAL AND ORDINAL DATA
    Lamb, Christopher R.
    Scrivani, Peter V.
    [J]. VETERINARY RADIOLOGY & ULTRASOUND, 2009, 50 (05) : 564 - 565
  • [34] Non-normal data: Is ANOVA still a valid option?
    Blanca, Maria J.
    Alarcon, Rafael
    Arnau, Jaume
    Bono, Roser
    Bendayan, Rebecca
    [J]. PSICOTHEMA, 2017, 29 (04) : 552 - 557
  • [35] Physical fitness indices for data with non-normal distribution
    Hung, Chang-Hung
    Hsu, Chang-Hsien
    [J]. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2011, 32 (01): : 245 - 254
  • [36] Linear regression models for heteroscedastic and non-normal data
    Thinh, Raksmey
    Samart, Klairung
    Jansakul, Naratip
    [J]. SCIENCEASIA, 2020, 46 (03): : 353 - 360
  • [37] THE DESIGN OF ACCEPTANCE CONTROL CHART FOR NON-NORMAL DATA
    Tsai, Tzong-Ru
    Chiang, Jyun-You
    [J]. JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2008, 25 (02) : 127 - 135
  • [38] Modeling non-normal data using statistical software
    Johnson, Lou
    [J]. R&D MAGAZINE, 2007, 49 (08): : 26 - 27
  • [39] Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation
    Shevtsova, Irina
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2012, 39 : 241 - 307
  • [40] ON NON-NORMAL NUMBERS
    COLEBROO.CM
    KEMPERMA.JH
    [J]. PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1968, 71 (01): : 1 - &