Fully automated gradient based breast boundary detection for digitized X-ray mammograms

被引:12
|
作者
Kus, Pelin [1 ]
Karagoz, Irfan [1 ]
机构
[1] Gazi Univ, Dept Elect & Elect Engn, TR-06570 Ankara, Turkey
关键词
Image analysis; Breast segmentation; Breast border; Mammogram; MIAS database; SEGMENTATION; IDENTIFICATION; REGION;
D O I
10.1016/j.compbiomed.2011.10.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurate segmentation of the breast from digital mammograms is an important pre-processing step for computerized breast cancer detection. In this study, we propose a fully automated segmentation method. Noise on the acquired mammogram is reduced by median filtering: multidirectional scanning is then applied to the resultant image using a moving window 15 x 1 in size. The border pixels are detected using the intensity value and maximum gradient value of the window. The breast boundary is identified from the detected pixels filtered using an averaging filter. The segmentation accuracy on a dataset of 84 mammograms from the MIAS database is 99%. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [21] Applying vertebral boundary semantics to CBIR of digitized spine X-ray images
    Antani, S
    Long, LR
    Thoma, GR
    STORAGE AND RETRIEVAL METHODS AND APPLICATIONS FOR MULTIMEDIA 2005, 2005, 5682 : 98 - 107
  • [22] Quantification and normalization of x-ray mammograms
    Tromans, Christopher E.
    Cocker, Mary R.
    Brady, Sir Michael
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (20): : 6519 - 6540
  • [23] Automated Edge Detection of Breast Masses on Mammograms
    Chakraborty, Sarmistha
    Bhowmik, Mrinal Kanti
    Ghosh, Anjan Kumar
    Pal, Tannistha
    PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, : 1241 - 1245
  • [24] Independent component analysis applied to breast cancer detection on digitized mammograms
    Gallardo-Caballero, R
    García-Orellana, CJ
    Macías-Macías, M
    González-Velasco, HM
    López-Aligué, FJ
    CARS 2005: COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2005, 1281 : 1052 - 1057
  • [25] Deep Learning Based Automated Chest X-ray Abnormalities Detection
    Parikh, Vraj
    Shah, Jainil
    Bhatt, Chintan
    Corchado, Juan M.
    Dac-Nhuong Le
    AMBIENT INTELLIGENCE-SOFTWARE AND APPLICATIONS-13TH INTERNATIONAL SYMPOSIUM ON AMBIENT INTELLIGENCE, 2023, 603 : 1 - 12
  • [26] Automated registration of diagnostic to prediagnostic x-ray mammograms: Evaluation and comparison to radiologists' accuracy
    Pereira, Snehal M. Pinto
    Hipwell, John H.
    McCormack, Valerie A.
    Tanner, Christine
    Moss, Sue M.
    Wilkinson, Louise S.
    Khoo, Lisanne A. L.
    Pagliari, Catriona
    Skippage, Pippa L.
    Kliger, Carole J.
    Hawkes, David J.
    Silva, Isabel M. dos Santos
    MEDICAL PHYSICS, 2010, 37 (09) : 4530 - 4539
  • [27] A fully automated system for three-dimensional X-ray angiography
    Trousset, Y
    Vaillant, R
    Launay, L
    Obadia, JM
    Pivet, N
    Anxionnat, R
    Picard, L
    CARS '99: COMPUTER ASSISTED RADIOLOGY AND SURGERY, 1999, 1191 : 39 - 43
  • [28] Larsen scoring of digitized X-ray images
    Solymossy, C
    Dixey, J
    Utley, M
    Gallivan, S
    Young, A
    Cox, N
    Davies, P
    Emery, P
    Gough, A
    James, D
    Prouse, P
    Williams, P
    Winfield, J
    RHEUMATOLOGY, 1999, 38 (11) : 1127 - 1129
  • [29] Digitized X-ray enhancement by pixel ordering
    Florea, Laura
    Vertan, Constantin
    ISSCS 2007: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2007, : 205 - +
  • [30] Fully automated scheme for computer-aided detection and breast cancer diagnosis using digitised mammograms
    Eltrass, Ahmed S.
    Salama, Mohamed S.
    IET IMAGE PROCESSING, 2020, 14 (03) : 495 - 505