Impact of Impure Gas on CO2 Capture from Flue Gas Using Carbon Nanotubes: A Molecular Simulation Study

被引:1
|
作者
Su, Yiru [1 ,2 ]
Liu, Siyao [1 ]
Gao, Xuechao [3 ]
机构
[1] Chongqing Univ, Sch Energy & Power Engn, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
[2] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China
[3] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
来源
MOLECULES | 2022年 / 27卷 / 05期
基金
中国博士后科学基金;
关键词
molecular simulation; gas separation; single-walled carbon nanotube; impure gases; INTERFACIAL RESISTANCE; ADSORPTIVE SEPARATION; NANOPOROUS CARBONS; WATER; TRANSPORT; DIOXIDE; VAPOR; PERFORMANCE; COMPETITION; DIFFUSION;
D O I
10.3390/molecules27051627
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We used a grand canonical Monte Carlo simulation to study the influence of impurities including water vapor, SO2, and O-2 in the flue gas on the adsorption of CO2/N-2 mixture in carbon nanotubes (CNTs) and carboxyl doped CNT arrays. In the presence of single impure gas, SO2 yielded the most inhibitions on CO2 adsorption, while the influence of water only occurred at low pressure limit (0.1 bar), where a one-dimensional chain of hydrogen-bonded molecules was formed. Further, O-2 was found to hardly affect the adsorption and separation of CO2. With three impurities in flue gas, SO2 still played a major role to suppress the adsorption of CO2 by reducing the adsorption amount significantly. This was mainly because SO2 had a stronger interaction with carbon walls in comparison with CO2. The presence of three impurities in flue gas enhanced the adsorption complexity due to the interactions between different species. Modified by hydrophilic carboxyl groups, a large amount of H2O occupied the adsorption space outside the tube in the carbon nanotube arrays, and SO2 produced competitive adsorption for CO2 in the tube. Both of the two effects inhibited the adsorption of CO2, but improved the selectivity of CO2/N-2, and the competition between the two determined the adsorption distribution of CO2 inside and outside the tube. In addition, it was found that (7, 7) CNT always maintained the best CO2/N-2 adsorption and separation performance in the presence of impurity gas, for both the cases of single CNT and CNT array.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A New Activated Carbon for CO2 Capture from Coal-Fired Boiler Flue Gas
    Don Carruthers, J.
    Petruska, Melissa A.
    Krishnan, Gopala
    Hombostel, Marc
    Bao, Jianer
    ADSORPTION SCIENCE & TECHNOLOGY, 2013, 31 (2-3) : 185 - 197
  • [42] Highlighting the Role of Activated Carbon Particle Size on CO2 Capture from Model Flue Gas
    Balsamo, Marco
    Rodriguez-Reinoso, Francisco
    Montagnaro, Fabio
    Lancia, Amedeo
    Erto, Alessandro
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (34) : 12183 - 12191
  • [43] CO2 capture and separation from flue gas by spraying hydrate method
    Ma, Xu
    Teng, Yadong
    Liu, Jie
    Wang, Yulu
    Zhang, Peng
    Zhang, Lianhai
    Yao, Wanlong
    Zhan, Jing
    Wu, Qingbai
    Huagong Xuebao/CIESC Journal, 2024, 75 (05): : 2001 - 2016
  • [44] Recent developments on polymeric membranes for CO2 capture from flue gas
    Han, Yang
    Ho, W. S. Winston
    JOURNAL OF POLYMER ENGINEERING, 2020, 40 (06) : 529 - 542
  • [45] Oxidation of amines at absorber conditions for CO2 capture from flue gas
    Voice, Alexander K.
    Rochelle, Gary T.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 171 - 178
  • [46] Further Developments in Dynamic Modelling of CO2 Capture from Flue Gas
    Dickinson, Jillian
    Puxty, Graeme
    Percy, Andrew
    Verheyen, T. Vincent
    IFAC PAPERSONLINE, 2015, 48 (01): : 216 - 221
  • [47] Dual Alkali Solvent System for CO2 Capture from Flue Gas
    Li, Yang
    Wang, H. Paul
    Liao, Chang-Yu
    Zhao, Xinglei
    Hsiung, Tung-Li
    Liu, Shou-Heng
    Chang, Shih-Ger
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (15) : 8824 - 8831
  • [48] CO2 recovery from flue gas by PSA process using activated carbon
    Byung-Ki Na
    Kee-Kahb Koo
    Hee-Moon Eum
    Hwaung Lee
    Hyung Keun Song
    Korean Journal of Chemical Engineering, 2001, 18 : 220 - 227
  • [49] CO2 recovery from flue gas by PSA process using activated carbon
    Na, BK
    Koo, KK
    Eum, HM
    Lee, H
    Song, HK
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2001, 18 (02) : 220 - 227
  • [50] Natural gas oxy-combustion with flue gas recycling for CO2 capture
    Bensakhria, Ammar
    Leturia, Mikel
    PRES 2010: 13TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION, 2010, 21 : 637 - 642