Finding and Visualizing Graph Clusters Using PageRank Optimization

被引:0
|
作者
Graham, Fan Chung [1 ]
Tsiatas, Alexander [1 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA 92103 USA
来源
关键词
COMMUNITY; ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We give algorithms for finding graph clusters and drawing graphs, highlighting local community structure within the context of a larger network. For a given graph G, we use the personalized Page Rank vectors to determine a set of clusters, by optimizing the jumping parameter alpha subject to several cluster variance measures in order to capture the graph structure according to Page Rank. We then give a graph visualization algorithm for the clusters using Page Rank-based coordinates. Several drawings of real-world data are given, illustrating the partition and local community structure.
引用
收藏
页码:86 / 97
页数:12
相关论文
共 50 条
  • [31] Finding Subspace Clusters using Ranked Neighborhoods
    Aksehirli, Emin
    Nijssen, Siegfried
    van Leeuwen, Matthijs
    Goethals, Bart
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 831 - 838
  • [32] Finding Overlapping Clusters in a Highly Connected Graph from a Given Difference Density
    Lavangnananda, Kittichai
    HemmatQachmas, Muhammad Aslam
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4620 - 4626
  • [33] PageRank optimization by edge selection
    Csaji, Balazs Csanad
    Jungers, Raphael M.
    Blondel, Vincent D.
    DISCRETE APPLIED MATHEMATICS, 2014, 169 : 73 - 87
  • [34] Node ranking based on graph curvature and PageRank
    曲鸿博
    宋玉蓉
    李汝琦
    李敏
    蒋国平
    Chinese Physics B, 2025, 34 (02) : 499 - 511
  • [35] Scaling Graph Neural Networks with Approximate PageRank
    Bojchevski, Aleksandar
    Klicpera, Johannes
    Perozzi, Bryan
    Kapoor, Amol
    Blais, Martin
    Rozemberczki, Benedek
    Lukasik, Michal
    Guennemann, Stephan
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 2464 - 2473
  • [36] Simple hierarchical PageRank graph neural networks
    Fei Yang
    Huyin Zhang
    Shiming Tao
    Xiying Fan
    The Journal of Supercomputing, 2024, 80 : 5509 - 5539
  • [37] Efficient PageRank approximation via graph aggregation
    A. Z. Broder
    R. Lempel
    F. Maghoul
    J. Pedersen
    Information Retrieval, 2006, 9 : 123 - 138
  • [38] Graph Mixed Random Network Based on PageRank
    Ma, Qianli
    Fan, Zheng
    Wang, Chenzhi
    Tan, Hongye
    SYMMETRY-BASEL, 2022, 14 (08):
  • [39] Scalable graph clustering with parallel approximate PageRank
    Perozzi, Bryan
    McCubbin, Christopher
    Halbert, J. T.
    SOCIAL NETWORK ANALYSIS AND MINING, 2014, 4 (01) : 1 - 11
  • [40] Simple hierarchical PageRank graph neural networks
    Yang, Fei
    Zhang, Huyin
    Tao, Shiming
    Fan, Xiying
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (04): : 5509 - 5539