Abuse testing of lithium-ion batteries -: Characterization of the overcharge reaction of LiCoO2/graphite cells

被引:214
|
作者
Leising, RA [1 ]
Palazzo, MJ
Takeuchi, ES
Takeuchi, KJ
机构
[1] Wilson Greatbatch Ltd, Clarence, NY 14031 USA
[2] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
关键词
D O I
10.1149/1.1379740
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The short-circuit and overcharge behavior of prismatic lithium-ion batteries containing LiCoO2 cathodes and graphite anodes were studied in detail. Internal thermocouples were used to characterize the thermal profiles of the cells under abusive conditions. Differences between the internal and surface temperatures of the cells during the safety tests highlighted the importance of the internal measurement for obtaining more meaningful data. Under short-circuit conditions the cells remained hermetically scaled, reached an internal temperature of 132 degreesC (the shutdown temperature of the separator), and then slowly cooled to ambient temperature. However, on extreme overcharge testing different results were obtained depending on the current used to charge the battery. At low currents (less than or equal toC/5) the cells remained hermetic, but swelled significantly. When higher currents were used, the cells ruptured during overcharge. Experimental cells were constructed with a systematic variation in cell balance and the point of cell rupture tracked to the amount of cathode in the cell, independent of the amount of anode material. The internal dc resistance of the cell was also measured during the overcharge reaction and remained low throughout most of the test, although a large increase was observed at the end of the test due to the melting of the shutdown separator. The cells overcharged with high currents all reached high temperatures (greater than or equal to 195 degreesC) immediately prior to rupturing, which suggests that the melting of lithium is a key underlying factor leading to the rupture of the cells. To test this proposal, cells were assembled with lithium removed from the LiCoO2 cathode, so that lithium metal would not plate on the anode during the overcharge test. These cells reached a significantly higher temperature (similar to 280 degreesC) prior to rupture. (C) 2001 The Electrochemical Society.
引用
收藏
页码:A838 / A844
页数:7
相关论文
共 50 条
  • [31] A Review of Recovering Lithium and Cobalt from Spent LiCoO2 Lithium-Ion Batteries Cathode
    Zhang, Zhiguo
    Fang, Ziming
    Li, Ying
    Huang, Yina
    Shen, Yanting
    Xiong, Bitao
    Zhao, Wenhua
    Li, Xing'ao
    Lang, Xiaoli
    Yang, Huanping
    CHEMISTRYSELECT, 2023, 8 (34):
  • [32] Pyrolysis-Ultrasonic-Assisted Flotation Technology for Recovering Graphite and LiCoO2 from Spent Lithium-Ion Batteries
    Zhang, Guangwen
    He, Yaqun
    Feng, Yi
    Wang, Haifeng
    Zhu, Xiangnan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (08): : 10896 - 10904
  • [33] Effect of overcharge on lithium-ion cells: Silicon/graphite anodes
    Bloom, Ira
    Rago, Nancy Dietz
    Sheng, Yangping
    Li, Jianlin
    Wood, David L., III
    Steele, Leigh Anna
    Lamb, Joshua
    Spangler, Scott
    Grosso, Christopher
    Fenton, Kyle
    JOURNAL OF POWER SOURCES, 2019, 432 : 73 - 81
  • [34] High capacity surface-modified LiCoO2 cathodes for lithium-ion batteries
    Kannan, AM
    Rabenberg, L
    Manthiram, A
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) : A16 - A18
  • [35] Understanding the interfacial reactions of LiCoO2 positive electrodes in aqueous lithium-ion batteries
    Oh, Hyunjeong
    Yamagishi, Hirona
    Ohta, Toshiaki
    Byon, Hye Ryung
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (09) : 3657 - 3663
  • [36] Research Progress of High-Voltage LiCoO2 Cathode for Lithium-ion Batteries
    Lin Chun
    Chen Yue
    Lin Hongbin
    Li Zhixuan
    Pan Handian
    Huang Zhigao
    RARE METAL MATERIALS AND ENGINEERING, 2021, 50 (04) : 1492 - 1504
  • [37] An investigation of silicon-doped LiCoO2 as cathode in lithium-ion secondary batteries
    Jin, Y
    Lin, P
    Chen, CH
    SOLID STATE IONICS, 2006, 177 (3-4) : 317 - 322
  • [38] Investigation of Laser Cutting Width of LiCoO2 Coated Aluminum for Lithium-Ion Batteries
    Lee, Dongkyoung
    Ahn, Sanghoon
    APPLIED SCIENCES-BASEL, 2017, 7 (09):
  • [39] Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries
    Choi, Jaecheol
    Son, Bongki
    Ryou, Myung-Hyun
    Kim, Sang Hern
    Ko, Jang Myoun
    Lee, Yong Min
    JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2013, 4 (01) : 27 - 33
  • [40] Simulated annealing reconstruction and characterization of a LiCoO2 Lithium-ion battery cathode
    Wu Wei
    Jiang FangMing
    CHINESE SCIENCE BULLETIN, 2013, 58 (36): : 4692 - 4695