Periodic orbits, superintegrability, and Bertrand's theorem

被引:2
|
作者
Martinez-y-Romero, R. P. [1 ]
Nunez-Yepez, H. N. [2 ]
Salas-Brito, A. L. [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Circuito Exterior, Fac Ciencias, Ciudad Univ, Mexico City 04510, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Fis, Unidad Iztapalapa, Apartado Postal 55-534, Mexico City 09340, DF, Mexico
[3] Univ Autonoma Metropolitana, Dept Ciencias Basicas, Lab Sistemas Dinam, Unidad Azcapotzalco, Apartado Postal 21-267, Mexico City 04000, DF, Mexico
关键词
Hamiltonians;
D O I
10.1063/1.5143582
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Periodic orbits are the key for understanding classical Hamiltonian systems. As we show here, they are the clue for understanding Bertrand's result relating the boundedness, flatness, and periodicity of orbits with the functional form of the potentials producing them. This result, which is known as Bertrand's theorem, was proved in 1883 using classical 19th century techniques. In this paper, we prove such a result using the relationship between the bounded plane and periodic orbits, constants of motion, and continuous symmetries in the Hamiltonian system.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A proof of Culter’s theorem on the existence of periodic orbits in polygonal outer billiards
    Serge Tabachnikov
    Geometriae Dedicata, 2007, 129 : 83 - 87
  • [22] Reeb’s Theorem and Periodic Orbits for a Rotating Hénon–Heiles Potential
    V. Lanchares
    A. I. Pascual
    M. Iñarrea
    J. P. Salas
    J. F. Palacián
    P. Yanguas
    Journal of Dynamics and Differential Equations, 2021, 33 : 445 - 461
  • [23] A proof of Culter's theorem on the existence of periodic orbits in polygonal outer billiards
    Tabachnikov, Serge
    GEOMETRIAE DEDICATA, 2007, 129 (01) : 83 - 87
  • [24] Reeb's Theorem and Periodic Orbits for a Rotating Henon-Heiles Potential
    Lanchares, V.
    Pascual, A. I.
    Inarrea, M.
    Salas, J. P.
    Palacian, J. F.
    Yanguas, P.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, 33 (01) : 445 - 461
  • [25] Bertrand’s theorem and virial theorem in fractional classical mechanics
    Rui-Yan Yu
    Towe Wang
    The European Physical Journal Plus, 132
  • [26] Bertrand's theorem and virial theorem in fractional classical mechanics
    Yu, Rui-Yan
    Wang, Towe
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (09):
  • [27] Periodic delay orbits and the polyfold implicit function theorem
    Albers, Peter
    Seifert, Irene
    COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (02) : 383 - 412
  • [28] A central limit theorem for periodic orbits of hyperbolic flows
    Cantrell, Stephen
    Sharp, Richard
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2021, 36 (01): : 142 - 153
  • [29] The Bertrand theorem
    Tiersten, MS
    AMERICAN JOURNAL OF PHYSICS, 2002, 70 (07) : 664 - 664
  • [30] Determination of the apsidal angles and Bertrand's theorem
    Santos, Filadelfo C.
    Soares, Vitorvani
    Tort, Alexandre C.
    PHYSICAL REVIEW E, 2009, 79 (03):