Characterization of an inconsistency ranking for pairwise comparison matrices

被引:26
|
作者
Csato, Laszlo [1 ,2 ]
机构
[1] Hungarian Acad Sci MTA SZTAKI, Inst Comp Sci & Control, Res Grp Operat Res & Decis Syst, Lab Engn & Management Intelligence, Budapest, Hungary
[2] Corvinus Univ Budapest BCE, Dept Operat Res & Actuarial Sci, Budapest, Hungary
关键词
Pairwise comparisons; Analytic Hierarchy Process (AHP); Inconsistency index; Axiomatic approach; Characterization; CONSISTENCY INDEX; HIRSCH-INDEX; AXIOMATIZATION; DEFINITION;
D O I
10.1007/s10479-017-2627-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Pairwise comparisons between alternatives are a well-known method for measuring preferences of a decision-maker. Since these often do not exhibit consistency, a number of inconsistency indices has been introduced in order to measure the deviation from this ideal case. We axiomatically characterize the inconsistency ranking induced by the Koczkodaj inconsistency index: six independent properties are presented such that they determine a unique linear order on the set of all pairwise comparison matrices.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 50 条
  • [41] Pairwise Comparison Based Ranking Vector Approach to Estimation Performance Ranking
    Yin, Hanlin
    Li, X. Rong
    Lan, Jian
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (06): : 942 - 953
  • [42] Measuring inconsistency and deriving priorities from fuzzy pairwise comparison matrices using the knowledge-based consistency index
    Kubler, Sylvain
    Derigent, William
    Voisin, Alexandre
    Robert, Jerermy
    Le Traon, Yves
    Herrera Viedma, Enrique
    KNOWLEDGE-BASED SYSTEMS, 2018, 162 : 147 - 160
  • [43] A Numerical Comparison of Iterative Algorithms for Inconsistency Reduction in Pairwise Comparisons
    Mazurek, Jiri
    Perzina, Radomir
    Strzalka, Dominik
    Kowal, Bartosz
    Kuras, Pawel
    IEEE ACCESS, 2021, 9 : 62553 - 62561
  • [44] Using Inconsistency Reduction Algorithms in Comparison Matrices to Improve the Performance of Generating Random Comparison Matrices with a Given Inconsistency Coefficient Range
    Kuras, Pawel
    Gerka, Alicja
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2023, 17 (01) : 222 - 229
  • [45] Polyad inconsistency measure for pairwise comparisons matrices: max-plus algebraic approach
    Hiroyuki Goto
    Shaohua Wang
    Operational Research, 2022, 22 : 401 - 422
  • [46] Consistency issues of interval pairwise comparison matrices
    Dong, Yucheng
    Chen, Xia
    Li, Cong-Cong
    Hong, Wei-Chiang
    Xu, Yinfeng
    SOFT COMPUTING, 2015, 19 (08) : 2321 - 2335
  • [47] A comparative study on precision of pairwise comparison matrices
    Bice Cavallo
    Jir̆í Mazurek
    Jaroslav Ramík
    Fuzzy Optimization and Decision Making, 2024, 23 : 179 - 198
  • [48] On the similarity between ranking vectors in the pairwise comparison method
    Kulakowski, Konrad
    Mazurek, Jiri
    Strada, Michal
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2022, 73 (09) : 2080 - 2089
  • [49] A comparative study on precision of pairwise comparison matrices
    Cavallo, Bice
    Mazurek, Jiri
    Ramik, Jaroslav
    FUZZY OPTIMIZATION AND DECISION MAKING, 2024, 23 (02) : 179 - 198
  • [50] Inverse sensitive analysis of pairwise comparison matrices
    Taji, Kouichi
    Matsumoto, Keiji
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 2006, 49 (04) : 332 - 341