Functional renormalization group approach to SU(N) Heisenberg models: Real-space renormalization group at arbitrary N

被引:33
|
作者
Buessen, Finn Lasse [1 ]
Roscher, Dietrich [1 ,2 ]
Diehl, Sebastian [1 ]
Trebst, Simon [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HUBBARD-MODEL; GROUP FLOWS; SYMMETRY; SYSTEMS; ANYONS; LIMIT;
D O I
10.1103/PhysRevB.97.064415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU(N)-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N, we can make a stringent connection between the physically most significant case of SU(2) spins and more accessible SU(N) models. In a case study of the square-lattice SU(N) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite, values of N. In a companion paper [Roscher et al., Phys. Rev. B 97, 064416 (2018)] we formulate a momentum-space pf-FRG approach for SU(N) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] REAL-SPACE RENORMALIZATION-GROUP STUDY OF FRACTAL ISING-MODELS
    BONNIER, B
    LEROYER, Y
    MEYERS, C
    PHYSICAL REVIEW B, 1988, 37 (10): : 5205 - 5210
  • [42] 1-N EXPANSION FOR THE REAL SPACE RENORMALIZATION GROUP
    KOHMOTO, M
    KADANOFF, LP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 270 - 270
  • [43] Facilitated spin models in one dimension: A real-space renormalization group study
    Whitelam, Stephen
    Garrahan, Juan P.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (4 2): : 046129 - 1
  • [44] REAL-SPACE RENORMALIZATION FOR HEISENBERG MODELS ON 2-DIMENSIONAL LATTICES
    CHERANOVSKI, VO
    SCHMALZ, TG
    KLEIN, DJ
    JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (07): : 5841 - 5846
  • [45] Real-space renormalization-group approach to the integer quantum Hall effect
    Cain, P
    Römer, RA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (13): : 2085 - 2119
  • [46] REAL-SPACE RENORMALIZATION-GROUP APPROACH TO THE KINETIC ISING-MODEL
    TAKANO, H
    SUZUKI, M
    PROGRESS OF THEORETICAL PHYSICS, 1982, 67 (05): : 1332 - 1352
  • [47] REAL-SPACE RENORMALIZATION-GROUP APPROACH TO A MODEL OF MELTING IN 2 DIMENSIONS
    JOSE, JV
    PHYSICAL REVIEW B, 1978, 18 (11): : 6395 - 6397
  • [48] AC CONDUCTIVITY OF A DISORDERED CHAIN - REAL-SPACE RENORMALIZATION-GROUP APPROACH
    ALDEA, A
    DULEA, M
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (21): : 4055 - 4062
  • [49] CORRELATED PERCOLATION - A REAL-SPACE RENORMALIZATION-GROUP STUDY
    ZHANG, ZQ
    PHYSICS LETTERS A, 1982, 91 (05) : 246 - 248
  • [50] APPLICATION OF THE REAL-SPACE RENORMALIZATION GROUP TO DYNAMIC CRITICAL PHENOMENA
    VALLS, OT
    NOLAN, MJ
    MAZENKO, GF
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (03): : 459 - 459