Functional renormalization group approach to SU(N) Heisenberg models: Real-space renormalization group at arbitrary N

被引:33
|
作者
Buessen, Finn Lasse [1 ]
Roscher, Dietrich [1 ,2 ]
Diehl, Sebastian [1 ]
Trebst, Simon [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[2] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HUBBARD-MODEL; GROUP FLOWS; SYMMETRY; SYSTEMS; ANYONS; LIMIT;
D O I
10.1103/PhysRevB.97.064415
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU(N)-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N, we can make a stringent connection between the physically most significant case of SU(2) spins and more accessible SU(N) models. In a case study of the square-lattice SU(N) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite, values of N. In a companion paper [Roscher et al., Phys. Rev. B 97, 064416 (2018)] we formulate a momentum-space pf-FRG approach for SU(N) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Functional renormalization group approach to SU(N) Heisenberg models: Momentum-space renormalization group for the large-N limit
    Roscher, Dietrich
    Buessen, Finn Lasse
    Scherer, Michael M.
    Trebst, Simon
    Diehl, Sebastian
    PHYSICAL REVIEW B, 2018, 97 (06)
  • [2] Real-space renormalization group approach for the corner Hamiltonian
    Okunishi, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (12) : 3186 - 3192
  • [3] Real-space renormalization group approach to the 2D antiferromagnetic Heisenberg model
    Sierra, G
    MartinDelgado, MA
    PHYSICS LETTERS B, 1997, 391 (3-4) : 381 - 387
  • [4] Real-space renormalization group approach to driven diffusive systems
    Hanney, T.
    Stinchcombe, R. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (47): : 14535 - 14544
  • [5] Real-space renormalization group approach to the quantum Hall transition
    Cain, Philipp
    Raikh, Mikhail E.
    Roemer, Rudolf A.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [6] REAL-SPACE RENORMALIZATION-GROUP APPROACH TO THE MULTIGRID METHOD
    VYAS, V
    PHYSICAL REVIEW D, 1991, 43 (10): : 3465 - 3474
  • [7] A real-space renormalization group for random surfaces
    Thorleifsson, G.
    Catterall, S.
    Nuclear Physics, Section B, 461 (1-2):
  • [8] KONDO LATTICE - REAL-SPACE RENORMALIZATION-GROUP APPROACH
    JULLIEN, R
    FIELDS, J
    DONIACH, S
    PHYSICAL REVIEW LETTERS, 1977, 38 (25) : 1500 - 1503
  • [9] Faithfulness of Real-Space Renormalization Group Maps
    Akamatsu, Katsuya O.
    Kawashima, Naoki
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (09)
  • [10] Contractor renormalization group technology and exact Hamiltonian real-space renormalization group transformations
    Morningstar, CJ
    Weinstein, M
    PHYSICAL REVIEW D, 1996, 54 (06) : 4131 - 4151