Using two-step method InP epilayers were grown on GaAs(100) substrates by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). X-ray diffraction (XRD) and room-temperature (RT) photoluminescence (PL) were employed to characterize the quality of InP epilayer. The best scheme of growing InP/GaAs(100) heterostructures was obtained by optimizing the initial low-temperature (LT) InP growth conditions, investigating the effects of thermal cycle annealing (TCA) and strained layer superlattice (SLS) on InP epilayers. Compared with annealing, 10-periods Ga0.1In0.9P/InP SLS inserted into InP epilayers can improve the quality of epilayers dramatically, by this means, for 2.6-mu m-thick heteroepitaxial InP, the full-widths at half-maximum (FWHMs) of XRD, omega and omega-2 theta scans are 219 and 203 arcsec, respectively, the RT PL spectrum shows the band edge transition of InP, the FWHM is 42 meV. In addition, the successful growth of InP/In0.53Ga0.47As MQWs on GaAs(100) substrates indicates the quality of device demand of InP/GaAs heterostructures.