Critical points of a non-linear functional related to the one-dimensional Ginzburg-Landau model of a superconducting-normal-superconducting junction

被引:0
|
作者
Yu Wanghui [1 ]
Yao Fengping [2 ]
Yang Danyu [3 ]
机构
[1] Suzhou Univ, Dept Math, Suzhou 215006, Peoples R China
[2] Peking Univ, Dept Math, Beijing 100871, Peoples R China
[3] Suzhou Foreign Language Sch, Suzhou 215011, Peoples R China
基金
中国国家自然科学基金;
关键词
critical points; superconductivity; S-N-S junction;
D O I
10.1016/j.na.2007.01.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-linear functional is studied, which is the limit of the one-dimensional Ginzburg-Landau model of a superconducting normal-superconducting junction as the Ginzburg-Landau parameter tends to infinity. it is found that the functional may have one, two or three critical points according to various conditions of related parameters and the exact number of the critical points is obtained in each case. Moreover, the necessary and sufficient conditions for minimizers are also established. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2038 / 2057
页数:20
相关论文
共 42 条
  • [21] One-dimensional model describing the non-linear viscoelastic response of materials
    Barta, Tomas
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2014, 55 (02): : 227 - 246
  • [22] Numerical methods for a one-dimensional non-linear Biot's model
    Gaspar, Francisco J.
    Lisbona, Francisco J.
    Matus, Piotr
    Vo Thi Kim Tuyen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 293 : 62 - 72
  • [23] A one-dimensional model for non-linear behaviour of piezoelectric composite materials
    Tan, P
    Tong, LY
    COMPOSITE STRUCTURES, 2002, 58 (04) : 551 - 561
  • [24] A model for one-dimensional consolidation of clayey soils with non-linear viscosity
    Oliveira, Fernando S.
    Martins, Ian S. M.
    Guimara, Leonardo J. N.
    COMPUTERS AND GEOTECHNICS, 2023, 159
  • [25] Gravitating superconducting solitons in the (3+1)-dimensional Einstein gauged non-linear σ-model
    Canfora, Fabrizio
    Giacomini, Alex
    Lagos, Marcela
    Oh, Seung Hun
    Vera, Aldo
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (01):
  • [26] A non-linear one-dimensional model of cross-deformable tubular beam
    Luongo, A.
    Zulli, D.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2014, 66 : 33 - 42
  • [27] Comment on "Spin transport properties of the quantum one-dimensional non-linear sigma model"
    Sachdev, S
    Damle, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (08) : 2712 - 2713
  • [28] FUNCTIONAL EQUIVALENCE IN A CLASS OF AUTONOMOUS ONE-DIMENSIONAL NON-LINEAR DISCRETE-TIME-SYSTEMS
    KLEIN, QL
    KALISKI, ME
    INFORMATION AND CONTROL, 1979, 42 (02): : 131 - 147
  • [29] NON-LINEAR DYNAMOS .1. ONE-DIMENSIONAL MODEL OF A THIN-LAYER DYNAMO
    SCHMITT, D
    SCHUSSLER, M
    ASTRONOMY & ASTROPHYSICS, 1989, 223 (1-2) : 343 - 351
  • [30] Reply to comment on "Spin transport properties of the quantum one-dimensional non-linear sigma model"
    Fujimoto, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (08) : 2714 - 2714