Active Topological Glass Confined within a Spherical Cavity

被引:12
|
作者
Chubak, Iurii [2 ,3 ]
Pachong, Stanard Mebwe [1 ]
Kremer, Kurt [1 ]
Likos, Christos N. [2 ]
Smrek, Jan [2 ]
机构
[1] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[2] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[3] Sorbonne Univ, CNRS, Phys Chim Electrolytes & Nanosyst Interfaciaux, F-75005 Paris, France
基金
奥地利科学基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
POLYMER RINGS; DYNAMICS; TRANSITION;
D O I
10.1021/acs.macromol.1c02471
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We study active topological glass under spherical confinement, allowing us to exceed the chain lengths simulated previously and determine the critical exponents of the arrested conformations. We find a previously unresolved "tank-treading" dynamic mode of active segments along the ring contour. This mode can enhance active-passive phase separation in the state of active topological glass when both diffusional and conformational relaxation of the rings are significantly suppressed. Within the observational time, we see no systematic trends in the positioning of the separated active domains within the confining sphere. The arrested state exhibits coherent stochastic rotations. We discuss possible connections of the conformational and dynamic features of the system to chromosomes enclosed in the nucleus of a living cell.
引用
收藏
页码:956 / 964
页数:9
相关论文
共 50 条
  • [1] Perturbation Theory for a Hydrogen-like Atom Confined Within an Impenetrable Spherical Cavity
    Laughlin, Cecil
    ADVANCES IN QUANTUM CHEMISTRY, VOL 57: THEORY OF CONFINED QUANTUM SYSTEMS: PT 1, 2009, 57 : 203 - 239
  • [2] Active topological glass
    Smrek, Jan
    Chubak, Iurii
    Likos, Christos N.
    Kremer, Kurt
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] Active topological glass
    Jan Smrek
    Iurii Chubak
    Christos N. Likos
    Kurt Kremer
    Nature Communications, 11
  • [4] DENSITY PROFILES OF FLUIDS CONFINED IN A SPHERICAL CAVITY
    KIM, SC
    SUH, JK
    SUH, SH
    MOLECULAR PHYSICS, 1993, 79 (06) : 1369 - 1370
  • [5] SPHERICAL RESONANT CAVITY (II) - RAMAN OSCILLATION WITHIN THE SPHERICAL CAVITY.
    Qian, Shixiong
    Guangxue Xuebao/Acta Optica Sinica, 1987, 7 (08): : 690 - 696
  • [6] Simulation of hydrodynamically interacting particles confined by a spherical cavity
    Aponte-Rivera, Christian
    Zia, Roseanna N.
    PHYSICAL REVIEW FLUIDS, 2016, 1 (02):
  • [7] MAGNETOHYDRODYNAMIC EQUILIBRIUM OF PLASMA CONFINED IN A SPHERICAL MICROWAVE CAVITY
    WOODS, CH
    PHYSICS OF FLUIDS, 1977, 20 (02) : 252 - 258
  • [8] PEGylation within a confined hydrophobic cavity of a protein
    Munasinghe, Aravinda
    Mathavan, Akshay
    Mathavan, Akash
    Lin, Ping
    Colina, Coray M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (46) : 25584 - 25596
  • [9] Spherical Cavity Glass Lasers for Multiwavelength Emission
    Shibata, Shuichi
    Yano, Tetsuji
    INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2011, 8 (05) : 1010 - 1016
  • [10] ILLUMINATION OF A SPHERICAL CAPSULE WITHIN A RADIATING CAVITY
    CARUSO, A
    STRANGIO, C
    NUCLEAR FUSION, 1991, 31 (07) : 1399 - 1405