Mask Detection and Social Distance Identification Using Internet of Things and Faster R-CNN Algorithm

被引:12
|
作者
Meivel, S. [1 ]
Sindhwani, Nidhi [2 ]
Anand, Rohit [3 ]
Pandey, Digvijay [4 ]
Alnuaim, Abeer Ali [5 ]
Altheneyan, Alaa S. [5 ]
Jabarulla, Mohamed Yaseen [6 ]
Lelisho, Mesfin Esayas [7 ]
机构
[1] M Kumarasamy Coll Engn, Karur, Tamil Nadu, India
[2] Amity Univ, AIIT, Noida, India
[3] DSEU, GB Pant Okhla 1 Campus, New Delhi, India
[4] Dr APJ Abdul Kalam Tech Univ Lucknow, Dept Syst Educ, IET Lucknow, Lucknow, India
[5] King Saud Univ, Coll Appl Studies & Community Serv, Dept Comp Sci & Engn, POB 22459, Riyadh 11495, Saudi Arabia
[6] Gwangju Inst Sci Technol, Sch Elect Engn & Comp Sci, Gwangju, South Korea
[7] Mizan Tepi Univ, Dept Stat, Coll Nat & Computat Sci, Tepi, Ethiopia
关键词
FACE MASK; FRAMEWORK; COVID-19; IOT;
D O I
10.1155/2022/2103975
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The drones can be used to detect a group of people who are unmasked and do not maintain social distance. In this paper, a deep learning-enabled drone is designed for mask detection and social distance monitoring. A drone is one of the unmanned systems that can be automated. This system mainly focuses on Industrial Internet of Things (IIoT) monitoring using Raspberry Pi 4. This drone automation system sends alerts to the people via speaker for maintaining the social distance. This system captures images and detects unmasked persons using faster regions with convolutional neural network (faster R-CNN) model. When the system detects unmasked persons, it sends their details to respective authorities and the nearest police station. The built model covers the majority of face detection using different benchmark datasets. OpenCV camera utilizes 24/7 service reports on a daily basis using Raspberry Pi 4 and a faster R-CNN algorithm.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Automatic Detection of Welding Defects Using Faster R-CNN
    Oh, Sang-jin
    Jung, Min-jae
    Lim, Chaeog
    Shin, Sung-chul
    APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 10
  • [32] Faster training of Mask R-CNN by focusing on instance boundaries
    Zimmermann, Roland S.
    Siems, Julien N.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 188
  • [33] Application of Mask R-CNN Algorithm for Apple Detection and Semantic Segmentation
    Jurewicz, Maciej
    Swiderski, Bartosz
    Kurek, Jarostaw
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (05): : 286 - 289
  • [34] An Improved Faster R-CNN for Object Detection
    Liu, Yu
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 119 - 123
  • [35] Pedestrian Detection based on Faster R-CNN
    Liu S.
    Cui X.
    Li J.
    Yang H.
    Lukač N.
    International Journal of Performability Engineering, 2019, 15 (07) : 1792 - 1801
  • [36] Bullet Impact Detection in Silhouettes Using Mask R-CNN
    Fernandez Vilchez, Richar
    Mauricio, David
    IEEE ACCESS, 2020, 8 : 129542 - 129552
  • [37] Detection of Respiratory Disease Patterns Using Mask R-CNN
    Aguilar, Eisler
    La Cruz, Alexandra
    Albertti, Raul
    Carnier, Martin
    Gavidia, Liliana
    Severeyn, Erika
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2022, VOL. 2, 2023, 448 : 739 - 750
  • [38] Environment Perception of Autonomous Vehicle Based on Internet of Things Using Mask R-CNN: Multi Environment Adaptability
    Xiao, Yushui
    Dong, Yucheng
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 912 - 918
  • [39] Smart office automation via faster R-CNN based face recognition and internet of things
    Rajeshkumar G.
    Braveen M.
    Venkatesh R.
    Josephin Shermila P.
    Ganesh Prabu B.
    Veerasamy B.
    Bharathi B.
    Jeyam A.
    Measurement: Sensors, 2023, 27
  • [40] 基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究
    于宪煜
    杨森
    大地测量与地球动力学, 2025, 45 (01) : 1 - 4+12