The influence of C-terminal extension on the structure of the "J-domain" in E-coli DnaJ

被引:0
|
作者
Huang, K
Flanagan, JM [1 ]
Prestegard, JH
机构
[1] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA
[2] Yale Univ, Dept Chem, New Haven, CT 06520 USA
[3] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
关键词
ATPase stimulatory activity; DnaJ; heat shock protein; molecular chaperone; NMR structure;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two different recombinant constructs of the N-terminal domain in Escherichia coli DnaJ were uniformly labeled with nitrogen-15 and carbon-13. One, DnaJ(1-78), contains the complete "J-domain," and the other, DnaJ(1-104), contains both the "J-domain" and a conserved "G/F' extension st the C-terminus. The three-dimensional structures of these proteins have been determined by heteronuclear NMR experiments. In both proteins the "J-domain" adopts a compact structure consisting of a helix-turn-herix-loop-helix-turn-helix motif. In contrast, the "G/F" region in DnaJ(1-104) does not fold into a well-defined structure. Nevertheless, the "G/F' region has been found to have an effect on the packing of the helices in the "J-domain" in DnaJ(1-104). Particularly, the interhelical angles between Helix IV and other helices are significantly different in the two structures. In addition, there are some local conformational changes in the loop region connecting the two central helices. These structural differences in the "J-domain" in the presence of the "G/F' region may be related to the observation that DnaJ(1-78) is incapable of stimulating the ATPase activity of the molecular chaperone protein DnaK despite evidence that sites mediating the binding of DnaJ to DnaK are located in the 1-78 segment.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [31] High-level expression of the C-terminal hydrophobic region of HCV E2 protein ectodomain in E-coli
    Liu, J
    Kong, YY
    Zhu, LX
    Wang, Y
    Li, GD
    VIRUS GENES, 2002, 25 (01) : 5 - 13
  • [32] HUMAN IMMUNOGLOBULIN-E - PRIMARY STRUCTURE OF C-TERMINAL DOMAIN OF EPSILON CHAIN
    BENNICH, H
    MILSTEIN, C
    SECHER, DS
    FEBS LETTERS, 1973, 33 (01): : 49 - 53
  • [33] Resonance assignments and secondary structure of apolipoprotein E C-terminal domain in DHPC micelles
    Lo, Chi-Jen
    Chyan, Chia-Lin
    Chen, Yi-Chen
    Chang, Chi-Fon
    Huang, Hsien-Bin
    Lin, Ta-Hsien
    BIOMOLECULAR NMR ASSIGNMENTS, 2015, 9 (01) : 187 - 190
  • [34] Structure and Function of C-Terminal Domain of Aciniform Spidroin
    Wang, Shujing
    Huang, Weidong
    Yang, Daiwen
    BIOMACROMOLECULES, 2014, 15 (02) : 468 - 477
  • [35] Analysis of the quaternary structure of the MutL C-terminal domain
    Kosinski, J
    Steindorf, I
    Bujnicki, JM
    Giron-Monzon, L
    Friedhoff, P
    JOURNAL OF MOLECULAR BIOLOGY, 2005, 351 (04) : 895 - 909
  • [36] The structure of the C-terminal domain of the Zaire ebolavirus nucleoprotein
    Dziubanska, Paulina J.
    Derewenda, Urszula
    Ellena, Jeffrey F.
    Engel, Daniel A.
    Derewenda, Zygmunt S.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2014, 70 : 2420 - 2429
  • [37] Crystal structure of the λ repressor C-terminal domain octamer
    Bell, CE
    Lewis, M
    JOURNAL OF MOLECULAR BIOLOGY, 2001, 314 (05) : 1127 - 1136
  • [38] An epitope structure for the C-terminal domain of dystrophin and utrophin
    Morris, GE
    Sedgwick, SG
    Ellis, JM
    Pereboev, A
    Chamberlain, JS
    Man, NT
    BIOCHEMISTRY, 1998, 37 (31) : 11117 - 11127
  • [39] Projection structure of the membrane domain of E-coli complex I
    Baranova, EA
    Holt, PJ
    Sazanov, LA
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1658 : 132 - 132
  • [40] SOLUTION STRUCTURE OF THE C-TERMINAL DOMAIN OF ESCHERICHIA-COLI DNA TOPOISOMERASE-I
    YU, LP
    ZHU, CX
    TSEDINH, YC
    FESIK, SW
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1995, : 67 - 67