A review of level-set methods and some recent applications

被引:284
|
作者
Gibou, Frederic [1 ,2 ]
Fedkiw, Ronald [3 ]
Osher, Stanley [4 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Level-set method; Ghost-fluid method; Voronoi interface method; Jump condition; Robin boundary condition; Dirichlet boundary condition; Octrees; Adaptive mesh refinement; Parallel computing; FRONT-TRACKING METHOD; ADAPTIVE MESH REFINEMENT; NAVIER-STOKES EQUATIONS; CONDITION CAPTURING METHOD; FINITE-DIFFERENCE SCHEME; FAST SWEEPING METHOD; GHOST FLUID METHOD; IRREGULAR DOMAINS; EFFICIENT IMPLEMENTATION; MODELING ELECTROPORATION;
D O I
10.1016/j.jcp.2017.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review some of the recent advances in level-set methods and their applications. In particular, we discuss how to imposeboundary conditions at irregular domains and free boundaries, as well as the extension of level-set methods to adaptive Cartesian grids and parallel architectures. Illustrative applications are taken from the physical and life sciences. Fast sweeping methods are briefly discussed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 50 条
  • [41] A level-set method for flaw visualization
    Westermann, R
    Johnson, C
    Ertl, T
    VISUALIZATION 2000, PROCEEDINGS, 2000, : 147 - 154
  • [42] Quasi-Newton methods for topology optimization using a level-set method
    Blauth, Sebastian
    Sturm, Kevin
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (09)
  • [43] A continuum level-set model of fracture
    Arvanitakis, Antonios I.
    INTERNATIONAL JOURNAL OF FRACTURE, 2020, 225 (02) : 239 - 249
  • [44] Structural optimization by the level-set method
    Allaire, G
    Jouve, F
    Toader, AM
    FREE BOUNDARY PROBLEMS: THEORY AND APPLICATIONS, 2004, 147 : 1 - 15
  • [45] Minimax optimal level-set estimation
    Willett, R. M.
    Nowak, R. D.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) : 2965 - 2979
  • [46] ON THE LEVEL-SET FORMULATION OF GEOMETRICAL MODELS
    NAKAYAMA, K
    HOPPE, J
    WADATI, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (02) : 403 - 407
  • [47] Level-set inequalities on fractional maximal distribution functions and applications to regularity theory
    Thanh-Nhan Nguyen
    Minh-Phuong Tran
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (01)
  • [48] Localized source and mask optimization with narrow-band level-set methods
    Shen, Yijiang
    OPTICAL MICROLITHOGRAPHY XXXII, 2019, 10961
  • [49] Validated simulation of droplet sedimentation with finite-element and level-set methods
    Bertakis, Evangelos
    Gross, Sven
    Grande, Joerg
    Fortmeier, Oliver
    Reusken, Arnold
    Pfennig, Andreas
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (06) : 2037 - 2051
  • [50] Level-set Modeling of sputter deposition
    Kwon, O
    Jung, H
    Kim, YT
    Yoon, I
    Won, T
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (01) : 72 - 76