A review of level-set methods and some recent applications

被引:284
|
作者
Gibou, Frederic [1 ,2 ]
Fedkiw, Ronald [3 ]
Osher, Stanley [4 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[3] Stanford Univ, Dept Comp Sci, Stanford, CA 94305 USA
[4] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Level-set method; Ghost-fluid method; Voronoi interface method; Jump condition; Robin boundary condition; Dirichlet boundary condition; Octrees; Adaptive mesh refinement; Parallel computing; FRONT-TRACKING METHOD; ADAPTIVE MESH REFINEMENT; NAVIER-STOKES EQUATIONS; CONDITION CAPTURING METHOD; FINITE-DIFFERENCE SCHEME; FAST SWEEPING METHOD; GHOST FLUID METHOD; IRREGULAR DOMAINS; EFFICIENT IMPLEMENTATION; MODELING ELECTROPORATION;
D O I
10.1016/j.jcp.2017.10.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We review some of the recent advances in level-set methods and their applications. In particular, we discuss how to imposeboundary conditions at irregular domains and free boundaries, as well as the extension of level-set methods to adaptive Cartesian grids and parallel architectures. Illustrative applications are taken from the physical and life sciences. Fast sweeping methods are briefly discussed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 109
页数:28
相关论文
共 50 条
  • [1] Level-set methods for structural topology optimization: a review
    van Dijk, N. P.
    Maute, K.
    Langelaar, M.
    van Keulen, F.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2013, 48 (03) : 437 - 472
  • [2] Level-set methods for structural topology optimization: a review
    N. P. van Dijk
    K. Maute
    M. Langelaar
    F. van Keulen
    Structural and Multidisciplinary Optimization, 2013, 48 : 437 - 472
  • [3] Level-set methods for convex optimization
    Aleksandr Y. Aravkin
    James V. Burke
    Dmitry Drusvyatskiy
    Michael P. Friedlander
    Scott Roy
    Mathematical Programming, 2019, 174 : 359 - 390
  • [4] Metamorphosis based on the level-set methods
    Pan, Qing
    Xu, Guo-Liang
    Jisuanji Xuebao/Chinese Journal of Computers, 2009, 32 (02): : 213 - 220
  • [5] Level-set methods for convex optimization
    Aravkin, Aleksandr Y.
    Burke, James V.
    Drusvyatskiy, Dmitry
    Friedlander, Michael P.
    Roy, Scott
    MATHEMATICAL PROGRAMMING, 2019, 174 (1-2) : 359 - 390
  • [6] Level set methods: An overview and some recent results
    Osher, S
    Fedkiw, RP
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) : 463 - 502
  • [7] ON THE ERSATZ MATERIAL APPROXIMATION IN LEVEL-SET METHODS
    Dambrine, Marc
    Kateb, Djalil
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (03) : 618 - 634
  • [8] Level-set methods for the simulation of epitaxial phenomena
    Gyure, MF
    Ratsch, C
    Merriman, B
    Caflisch, RE
    Osher, S
    Zinck, JJ
    Vvedensky, DD
    PHYSICAL REVIEW E, 1998, 58 (06): : R6927 - R6930
  • [9] Topology optimization with the homogenization and the level-set methods
    Allaire, C
    NONLINEAR HOMOGENIZATION AND ITS APPLICATIONS TO COMPOSITES, POLYCRYSTALS AND SMART MATERIALS, 2004, 170 : 1 - 13
  • [10] A perturbation view of level-set methods for convex optimization
    Ron Estrin
    Michael P. Friedlander
    Optimization Letters, 2020, 14 : 1989 - 2006