Abstractions, algorithms and data structures for structural bioinformatics in PyCogent

被引:2
|
作者
Cieslik, Marcin [1 ]
Derewenda, Zygmunt S. [2 ]
Mura, Cameron [1 ]
机构
[1] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA
[2] Univ Virginia, Hlth Sci Ctr, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA
来源
JOURNAL OF APPLIED CRYSTALLOGRAPHY | 2011年 / 44卷
关键词
protein structure analysis; bioinformatics; computer programs; PyCogent; PROTEIN; TOOLKIT; FILE;
D O I
10.1107/S0021889811004481
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To facilitate flexible and efficient structural bioinformatics analyses, new functionality for three-dimensional structure processing and analysis has been introduced into PyCogent - a popular feature-rich framework for sequence-based bioinformatics, but one which has lacked equally powerful tools for handling stuctural/coordinate-based data. Extensible Python modules have been developed, which provide object-oriented abstractions (based on a hierarchical representation of macromolecules), efficient data structures (e.g. kD-trees), fast implementations of common algorithms (e.g. surface-area calculations), read/write support for Protein Data Bank-related file formats and wrappers for external command-line applications (e.g. Stride). Integration of this code into PyCogent is symbiotic, allowing sequence-based work to benefit from structure-derived data and, reciprocally, enabling structural studies to leverage PyCogent's versatile tools for phylogenetic and evolutionary analyses.
引用
收藏
页码:424 / 428
页数:5
相关论文
共 50 条
  • [31] Voxelisation Algorithms and Data Structures: A Review
    Aleksandrov, Mitko
    Zlatanova, Sisi
    Heslop, David J.
    SENSORS, 2021, 21 (24)
  • [32] Algorithms and Data Structures: The Basic Toolbox
    Petit, Jordi
    COMPUTER SCIENCE REVIEW, 2009, 3 (01) : 47 - 51
  • [33] Data structures and algorithms for topological analysis
    Cane, Jean-Marc
    Tzoumas, George M.
    Michelucci, Dominique
    Hidalgo, Marta
    Foufou, Sebti
    2014 SCIENCE AND INFORMATION CONFERENCE (SAI), 2014, : 302 - 312
  • [34] DATA STRUCTURES AND TIME COMPLEXITY OF ALGORITHMS
    Seda, Milos
    APLIMAT 2005 - 4TH INTERNATIONAL CONFERENCE, PT II, 2005, : 245 - 250
  • [35] Advanced Algorithms of Bioinformatics
    Chen, Yi-Ping Phoebe
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (02) : 273 - 273
  • [36] An introduction to bioinformatics algorithms
    Van Ryssen, Stefaan
    LEONARDO, 2006, 39 (05) : 486 - 486
  • [37] Bioinformatics algorithms in introductory bioinformatics interdisciplinary course
    Kortsarts, Y
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U766 - U766
  • [38] Does the Inclusion of Data Sampling Improve the Performance of Boosting Algorithms on Imbalanced Bioinformatics Data?
    Fazelpour, Alireza
    Khoshgoftaar, Taghi M.
    Dittman, David J.
    Napolitano, Amri
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 527 - 534
  • [39] HARD DATA ANALYTICS PROBLEMS MAKE FOR BETTER DATA ANALYSIS ALGORITHMS: Bioinformatics as an Example
    Bacardit, Jaume
    Widera, Pawe
    Lazzarini, Nicola
    Krasnogor, Natalio
    BIG DATA, 2014, 2 (03) : 164 - 176
  • [40] Data structures and compression algorithms for genomic sequence data
    Brandon, Marty C.
    Wallace, Douglas C.
    Baldi, Pierre
    BIOINFORMATICS, 2009, 25 (14) : 1731 - 1738