A Unified Model for Robust Differential Expression Analysis of RNA-Seq Data

被引:0
|
作者
Liu, Kefei [1 ]
Shen, Li [1 ]
Jiang, Hui [2 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
关键词
Differential expression analysis; Inter-sample normalization; Linear regression; L0 sparsity regularization; RNA-seq; PROSTATE-CANCER; DOWN-REGULATION; NORMALIZATION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A fundamental task for RNA-seq data analysis is to determine whether the RNA-seq read counts for a gene or exon are significantly different across experimental conditions. Since the RNA-seq measurements are relative in nature, between-sample normalization of counts is an essential step in differential expression (DE) analysis. In most existing methods the normalization step is independent of DE analysis, which is not well justified since ideally normalization should be based on non-DE genes only. Recently, Jiang and Zhan proposed a robust statistical model for joint between-sample normalization and DE analysis from log-transformed RNA-seq data. Sample-specific normalization factors are modeled as unknown parameters in the gene-wise linear models, and the L0 penalty is introduced to induce sparsity in the regression coefficients. In their model, the experimental conditions are assumed to be categorical (e.g., 0 for control and 1 for case), and one-way analysis of variance (ANOVA) is used to identify genes that are differentially expressed between two or more conditions. In this work, Jiang and Zhan's model is generalized to accommodate continuous/numerical experimental conditions, and a linear regression model is used to detect genes for which the expression level is significantly affected by the experimental conditions. Furthermore, an efficient algorithm is developed to solve for the global solution of the resultant high-dimensional, non-convex and non-differentiable penalized least squares regression problem. Extensive simulation studies and a real RNA-seq data example show that when the proportion of DE genes is small or the numbers of up-and down-regulated genes are approximately equal the proposed method performs similarly to existing methods in terms of detection power and false positive rate. When a large proportion (e.g., > 30%) of genes are differentially expressed in an asymmetric manner, it outperforms existing methods and the performance gain is even more substantial as the sample size increases.
引用
收藏
页码:437 / 442
页数:6
相关论文
共 50 条
  • [1] A Unified Model for Joint Normalization and Differential Gene Expression Detection in RNA-Seq Data
    Liu, Kefei
    Ye, Jieping
    Yang, Yang
    Shen, Li
    Jiang, Hui
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (02) : 442 - 454
  • [2] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    [J]. BMC BIOINFORMATICS, 2013, 14 : 110
  • [3] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    [J]. BMC Bioinformatics, 14
  • [4] Stability of methods for differential expression analysis of RNA-seq data
    Bingqing Lin
    Zhen Pang
    [J]. BMC Genomics, 20
  • [5] Novel Data Transformations for RNA-seq Differential Expression Analysis
    Zhang, Zeyu
    Yu, Danyang
    Seo, Minseok
    Hersh, Craig P.
    Weiss, Scott T.
    Qiu, Weiliang
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Stability of methods for differential expression analysis of RNA-seq data
    Lin, Bingqing
    Pang, Zhen
    [J]. BMC GENOMICS, 2019, 20 (1)
  • [7] Novel Data Transformations for RNA-seq Differential Expression Analysis
    Zeyu Zhang
    Danyang Yu
    Minseok Seo
    Craig P. Hersh
    Scott T. Weiss
    Weiliang Qiu
    [J]. Scientific Reports, 9
  • [8] A comparison of methods for differential expression analysis of RNA-seq data
    Soneson, Charlotte
    Delorenzi, Mauro
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [9] A comparison of methods for differential expression analysis of RNA-seq data
    Charlotte Soneson
    Mauro Delorenzi
    [J]. BMC Bioinformatics, 14
  • [10] Data Driven Feature Selection for RNA-Seq Differential Expression Analysis
    Han, Henry
    [J]. PATTERN RECOGNITION IN BIOINFORMATICS, PRIB 2014, 2014, 8626 : 114 - 115