Stability of methods for differential expression analysis of RNA-seq data

被引:12
|
作者
Lin, Bingqing [1 ]
Pang, Zhen [2 ]
机构
[1] Shenzhen Univ, Coll Math & Stat, Inst Stat Sci, Shenzhen, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Stability; DE analysis; RNA-seq data; FALSE DISCOVERY RATE; REPRODUCIBILITY; MICROARRAY;
D O I
10.1186/s12864-018-5390-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundAs RNA-seq becomes the assay of choice for measuring gene expression levels, differential expression analysis has received extensive attentions of researchers. To date, for the evaluation of DE methods, most attention has been paid on validity. Yet another important aspect of DE methods, stability, is overlooked and has not been studied to the best of our knowledge.ResultsIn this study, we empirically show the need of assessing stability of DE methods and propose a stability metric, called Area Under the Correlation curve (AUCOR), that generates the perturbed datasets by a mixture distribution and combines the information of similarities between sets of selected features from these perturbed datasets and the original dataset.ConclusionEmpirical results support that AUCOR can effectively rank the DE methods in terms of stability for given RNA-seq datasets. In addition, we explore how biological or technical factors from experiments and data analysis affect the stability of DE methods. AUCOR is implemented in the open-source R package AUCOR, with source code freely available at https://github.com/linbingqing/stableDE.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Stability of methods for differential expression analysis of RNA-seq data
    Bingqing Lin
    Zhen Pang
    [J]. BMC Genomics, 20
  • [2] A comparison of methods for differential expression analysis of RNA-seq data
    Soneson, Charlotte
    Delorenzi, Mauro
    [J]. BMC BIOINFORMATICS, 2013, 14
  • [3] A comparison of methods for differential expression analysis of RNA-seq data
    Charlotte Soneson
    Mauro Delorenzi
    [J]. BMC Bioinformatics, 14
  • [4] Differential expression analysis for paired RNA-seq data
    Chung, Lisa M.
    Ferguson, John P.
    Zheng, Wei
    Qian, Feng
    Bruno, Vincent
    Montgomery, Ruth R.
    Zhao, Hongyu
    [J]. BMC BIOINFORMATICS, 2013, 14 : 110
  • [5] Differential expression analysis for paired RNA-seq data
    Lisa M Chung
    John P Ferguson
    Wei Zheng
    Feng Qian
    Vincent Bruno
    Ruth R Montgomery
    Hongyu Zhao
    [J]. BMC Bioinformatics, 14
  • [6] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E Mason
    Nicholas D Socci
    Doron Betel
    [J]. Genome Biology, 14
  • [7] Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Rapaport, Franck
    Khanin, Raya
    Liang, Yupu
    Pirun, Mono
    Krek, Azra
    Zumbo, Paul
    Mason, Christopher E.
    Socci, Nicholas D.
    Betel, Doron
    [J]. GENOME BIOLOGY, 2013, 14 (09):
  • [8] Erratum to: Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data
    Franck Rapaport
    Raya Khanin
    Yupu Liang
    Mono Pirun
    Azra Krek
    Paul Zumbo
    Christopher E. Mason
    Nicholas D. Socci
    Doron Betel
    [J]. Genome Biology, 16
  • [9] Novel Data Transformations for RNA-seq Differential Expression Analysis
    Zhang, Zeyu
    Yu, Danyang
    Seo, Minseok
    Hersh, Craig P.
    Weiss, Scott T.
    Qiu, Weiliang
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] Novel Data Transformations for RNA-seq Differential Expression Analysis
    Zeyu Zhang
    Danyang Yu
    Minseok Seo
    Craig P. Hersh
    Scott T. Weiss
    Weiliang Qiu
    [J]. Scientific Reports, 9