Reflection Electron Energy Loss Spectra beyond the optical limit

被引:2
|
作者
Calliari, Lucia [1 ,2 ]
Dapor, Maurizio [1 ,2 ]
Garberoglio, Giovanni [1 ,2 ]
Fanchenko, Sergey [3 ]
机构
[1] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Trento, Italy
[2] Ist Nazl Fis Nucl, Trento Inst Fundamental Phys & Applicat, I-38123 Trento, Italy
[3] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
关键词
Inelastic scattering; Electron energy loss; Monte Carlo; Plasmon energy dispersion; Plasmon damping dispersion; BETHE SURFACE; SPECTROSCOPY; METALS; DEPENDENCE; SOLIDS; WATER; SI;
D O I
10.1016/j.nimb.2014.11.106
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A position-dependent Inverse Inelastic Mean Free Path (IIMFP), calculated according to the Chen Kwei theory of inelastic scattering, is used to obtain Reflection Electron Energy Loss Spectra (REELS) by a Monte Carlo approach. The basic ingredient of the theory is the energy-loss and momentum-transfer dependent dielectric function, for which we use a plasmon-pole approximation to the Lindhard dielectric function. The dependence on the momentum transfer enters by assuming a proper dispersion relation for the energy loss. Experiments reveal however that, beside energy loss, also plasmon damping disperses with momentum transfer. By comparing measured and calculated REEL spectra, we explore the role of damping dispersion for a quasi-free-electron material like silicon. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 50 条
  • [21] Monte Carlo calculation of electron Rutherford backscattering spectra and high-energy reflection electron energy loss spectra
    Li, Y. G.
    Ding, Z. J.
    Zhang, Z. M.
    Tokesi, K.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2009, 267 (02): : 215 - 220
  • [22] Effective energy loss functions of Mo and Ta derived from reflection electron energy loss spectra
    Chen, T.
    Zhang, Z. M.
    Ding, Z. J.
    Shimizu, R.
    Goto, K.
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2007, 159 (1-3) : 62 - 65
  • [23] Revision of optical property of silicon by a reverse Monte Carlo analysis of reflection electron energy loss spectroscopy spectra
    Yang, L. H.
    Tokesi, K.
    Toth, J.
    Da, B.
    Ding, Z. J.
    31ST INTERNATIONAL CONFERENCE ON PHOTONIC, ELECTRONIC AND ATOMIC COLLISIONS (ICPEAC XXXI), 2020, 1412
  • [24] QUANTITATIVE-ANALYSIS OF REFLECTION ELECTRON-ENERGY LOSS SPECTRA OF ALUMINUM
    TOUGAARD, S
    CHORKENDORFF, I
    SOLID STATE COMMUNICATIONS, 1986, 57 (01) : 77 - 79
  • [25] Momentum transfer dependence of reflection electron energy loss spectra: theory and experiment
    Calliari, Lucia
    Dapor, Maurizio
    Garberoglio, Giovanni
    Fanchenko, Sergey
    SURFACE AND INTERFACE ANALYSIS, 2014, 46 (05) : 340 - 349
  • [26] Surface and bulk plasmon coupling observed in reflection electron energy loss spectra
    Werner, WSM
    SURFACE SCIENCE, 2003, 526 (03) : L159 - L164
  • [27] Extracting the Ag surface and volume loss functions from reflection electron energy loss spectra
    Went, M. R.
    Vos, M.
    Werner, W. S. M.
    SURFACE SCIENCE, 2008, 602 (12) : 2069 - 2077
  • [28] REFLECTION ELECTRON-ENERGY LOSS SPECTRA OF SILVER - A QUANTITATIVE-ANALYSIS
    YUBERO, F
    SANZ, JM
    ELIZALDE, E
    GALAN, L
    SURFACE SCIENCE, 1991, 251 : 296 - 300
  • [29] Simple algorithm for quantitative analysis of reflection electron energy loss spectra (REELS)
    Werner, Wolfgang S. M.
    SURFACE SCIENCE, 2010, 604 (3-4) : 290 - 299
  • [30] Absolute determination of optical constants by reflection electron energy loss spectroscopy
    Xu, H.
    Da, B.
    Toth, J.
    Tokesi, K.
    Ding, Z. J.
    PHYSICAL REVIEW B, 2017, 95 (19)