Multimodal Semantics-Based Supervised Latent Dirichlet Allocation for Event Classification

被引:2
|
作者
Miao, Naiyang [1 ,2 ]
Xue, Feng [1 ,2 ]
Hong, Richang [1 ,2 ]
机构
[1] Hefei Univ Technol, Minist Educ, Key Lab Knowledge Engn Big Data, Hefei 230009, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantics; Visualization; Social networking (online); Data models; Feature extraction; Dictionaries; Data mining; Social Event Classification; Semantics Embedding; Multi-Modal; Supervised LDA;
D O I
10.1109/MMUL.2021.3077915
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Social event classification has always been a research topic of great interest in the field of social event analysis. In existing social event classification methods, although some researchers consciously use external semantics to improve model performance, they ignore the more easily available internal semantics. In this article, we propose a multimodal supervised topic model based on semantic weighting (Sem-MMSTM), which uses two kinds of internal semantics, namely part of speech semantics and category semantics. Our Sem-MMSTM model is capable of mining and making use of the semantics of the text itself and the category semantics of multimodal supervised corpus. The experimental results show that, compared with the state-of-the-art model, our proposed Sem-MMSTM yields significant performance improvement both on the metrics of classification accuracy (ACC) and interpretability of topics (PMI) due to the introduction of effective semantic information.
引用
收藏
页码:8 / 17
页数:10
相关论文
共 50 条
  • [11] Semi supervised classification of scientific and technical literature based on semi supervised hierarchical description of improved latent dirichlet allocation (LDA)
    Zhang, Yongjun
    Ma, Jialin
    Wang, Zijian
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S6881 - S6889
  • [12] Automated classification of software change messages by semi-supervised Latent Dirichlet Allocation
    Fu, Ying
    Yan, Meng
    Zhang, Xiaohong
    Xu, Ling
    Yang, Dan
    Kymer, Jeffrey D.
    INFORMATION AND SOFTWARE TECHNOLOGY, 2015, 57 : 369 - 377
  • [13] Classification of Indonesian News Articles based on Latent Dirichlet Allocation
    Kusumaningrum, Retno
    Adhy, Satriyo
    Wiedjayanto, M. Ihsan Aji
    Suryono
    PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON DATA AND SOFTWARE ENGINEERING (ICODSE), 2016,
  • [14] Multi-view supervised latent dirichlet allocation
    Li, Xiao-Xu
    Li, Rui-Fan
    Feng, Fang-Xiang
    Cao, Jie
    Wang, Xiao-Jie
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (10): : 2040 - 2044
  • [15] Supervised labeled latent Dirichlet allocation for document categorization
    Li, Ximing
    Ouyang, Jihong
    Zhou, Xiaotang
    Lu, You
    Liu, Yanhui
    APPLIED INTELLIGENCE, 2015, 42 (03) : 581 - 593
  • [16] Supervised latent Dirichlet allocation with a mixture of sparse softmax
    Li, Xiaoxu
    Ma, Zhanyu
    Peng, Pai
    Guo, Xiaowei
    Huang, Feiyue
    Wang, Xiaojie
    Guo, Jun
    NEUROCOMPUTING, 2018, 312 : 324 - 335
  • [17] Supervised labeled latent Dirichlet allocation for document categorization
    Ximing Li
    Jihong Ouyang
    Xiaotang Zhou
    You Lu
    Yanhui Liu
    Applied Intelligence, 2015, 42 : 581 - 593
  • [18] Latent Dirichlet Allocation Models for Image Classification
    Rasiwasia, Nikhil
    Vasconcelos, Nuno
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2665 - 2679
  • [19] Semi-supervised Document Clustering Based on Latent Dirichlet Allocation (LDA)
    秦永彬
    李解
    黄瑞章
    李晶
    JournalofDonghuaUniversity(EnglishEdition), 2016, 33 (05) : 685 - 688
  • [20] Grounding of Word Meanings in Latent Dirichlet Allocation-Based Multimodal Concepts
    Nakamura, Tomoaki
    Araki, Takaya
    Nagai, Takayuki
    Iwahashi, Naoto
    ADVANCED ROBOTICS, 2011, 25 (17) : 2189 - 2206