Highly Accurate Schemes for Wave Propagation Systems: Application in Aeroacoustics

被引:0
|
作者
Bartoli, Nathalie [1 ]
Mazet, Pierre-Alain [1 ]
Mouysset, Vincent [1 ]
Rogier, Francois [1 ]
机构
[1] Off Natl Etud & Rech Aerosp, F-31055 Toulouse 4, France
关键词
Discontinuous Galerkin method; aeroacoustic; convective and absolute instabilities;
D O I
10.1063/1.3498461
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Discontinuous Galerkin (DG) method is considered for computational aeroacoustic. A software has been developed to make it possible to test a large variety of configurations (non-cor form grid, variable polynomial order). To deal with instationary phenomena involved by some shear flows, a compromise between time computation and accuracy is deduced from some numerical experiments.
引用
收藏
页码:313 / 316
页数:4
相关论文
共 50 条
  • [21] Stable and accurate wave-propagation in discontinuous media
    Mattsson, Ken
    Ham, Frank
    Iaccarino, Gianluca
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (19) : 8753 - 8767
  • [22] Accurate analysis of wave propagation in negative uniaxial crystal
    Massaro, A
    Pierantoni, L
    Rozzi, T
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (06) : 821 - 829
  • [23] Application of high-order accurate methods to solve the computational gas dynamics and aeroacoustics problems
    Usanin M.V.
    Siner A.A.
    Sipatov A.M.
    Gomzikov L.Yu.
    Avgustinovich V.G.
    Russian Aeronautics (Iz VUZ), 2011, 54 (1) : 34 - 42
  • [24] Highly accurate conservative finite difference schemes and adaptive mesh refinement techniques for hyperbolic systems of conservation laws
    Mulet, Pep
    Baeza, Antonio
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2006, : 198 - +
  • [25] EFFICIENT AND ACCURATE SAV SCHEMES FOR THE GENERALIZED ZAKHAROV SYSTEMS
    Shen, Jie
    Zheng, Nan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (01): : 645 - 666
  • [26] Stable marching schemes based on elliptic models of wave propagation
    Knightly, George H.
    St. Mary, Donald F.
    Journal of the Acoustical Society of America, 1993, 93 (4 pt 1):
  • [27] High Order Padé Schemes for Nonlinear Wave Propagation Problems
    Peiling Li~* Ruxun Liu (Department of Mathematics
    Numerical Mathematics:A Journal of Chinese Universities(English Series), 2007, (04) : 370 - 382
  • [28] Efficient Simulation of Wave Propagation with Implicit Finite Difference Schemes
    Zhang, Wensheng
    Tong, Li
    Chung, Eric T.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (02) : 205 - 228
  • [29] Multiresolution schemes for time-scaled propagation of wave packets
    Frapiccini, Ana Laura
    Hamido, Aliou
    Mota-Furtado, Francisca
    O'Mahony, Patrick F.
    Piraux, Bernard
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [30] Optimised prefactored compact schemes for linear wave propagation phenomena
    Rona, A.
    Spisso, I.
    Hall, E.
    Bernardini, M.
    Pirozzoli, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 328 : 66 - 85