Hybrid Methods Using Neural Network and Kalman Filter for the State of Charge Estimation of Lithium-Ion Battery

被引:50
|
作者
Cui, Zhenhua [1 ]
Dai, Jiyong [2 ]
Sun, Jianrui [2 ]
Li, Dezhi [1 ]
Wang, Licheng [3 ]
Wang, Kai [1 ]
机构
[1] Qingdao Univ, Sch Elect Engn, Weihai Innovat Res Inst, Qingdao 266000, Peoples R China
[2] Shandong Wide Area Technol Co Ltd, Dongying 257081, Peoples R China
[3] Zhejiang Univ Technol, Sch Informat Engn, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
ONLINE MODEL IDENTIFICATION; OF-HEALTH ESTIMATION; STABILITY; CAPACITY; PACKS;
D O I
10.1155/2022/9616124
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the increasing carbon emissions worldwide, lithium-ion batteries have become the main component of energy storage systems for clean energy due to their unique advantages. Accurate and reliable state-of-charge (SOC) estimation is a central factor in the widespread use of lithium-ion batteries. This review, therefore, examines the recent literature on estimating the SOC of lithium-ion batteries using the hybrid methods of neural networks combined with Kalman filtering (NN-KF), classifying the methods into Kalman filter-first and neural network-first methods. Then the hybrid methods are studied and discussed in terms of battery model, parameter identification, algorithm structure, implementation process, appropriate environment, advantages, disadvantages, and estimation errors. In addition, this review also gives corresponding recommendations for researchers in the battery field considering the existing problems.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [21] State of Charge Estimation Based on Extened Kalman Filter Algorithm for Lithium-Ion Battery
    Kamal, E.
    El Hajjaji, A.
    Mabwe, A. Mpanda
    2015 23RD MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2015, : 734 - 739
  • [22] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [23] State of charge estimation of Lithium-ion battery using Extended Kalman Filter based on a comprehensive model
    Li, Hao
    Liu, Sheng Yong
    Yu, Yue
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE IV, PTS 1-5, 2014, 496-500 : 999 - 1002
  • [24] State of Charge Estimation for Lithium-Ion Battery by Using Dual Square Root Cubature Kalman Filter
    Chen, Luping
    Xu, Liangjun
    Wang, Ruoyu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [25] State of Charge and parameters estimation for Lithium-ion battery using Dual Adaptive Unscented Kalman Filter
    Guo, Hongzhen
    Wang, Zhonghua
    Li, Yueyang
    Wang, Dongxue
    Wang, Guangying
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4962 - 4966
  • [26] State of charge estimation of lithium-ion battery based on double deep Q network and extended Kalman filter
    You, Guodong
    Wang, Xue
    Fang, Chengxin
    Zhang, Shang
    Hou, Xiaoxin
    2020 INTERNATIONAL CONFERENCE ON GREEN DEVELOPMENT AND ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2020, 615
  • [27] State of Charge Estimation for Lithium-Ion Battery Based on Unscented Kalman Filter and Long Short-Term Memory Neural Network
    Zeng, Yi
    Li, Yan
    Yang, Tong
    BATTERIES-BASEL, 2023, 9 (07):
  • [28] Estimation of state of charge of lithium-ion battery based on finite difference extended kalman filter
    Tianjin University, Tianjin 300072, China
    Liu, Y., 1600, China Machine Press (29):
  • [29] State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
    Li, Guochun
    Liu, Chang
    Wang, Enlong
    Wang, Limei
    AUTOMOTIVE INNOVATION, 2021, 4 (02) : 189 - 200
  • [30] State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
    Guochun Li
    Chang Liu
    Enlong Wang
    Limei Wang
    Automotive Innovation, 2021, 4 : 189 - 200