Scanning electron microscopy, cathodoluminescence, and Raman spectroscopy of experimentally shock-metamorphosed quartzite

被引:0
|
作者
Gucsik, A
Koeberl, C
Brandstätter, F
Libowitzky, E
Reimold, WU
机构
[1] Univ Vienna, Dept Geol Sci, A-1090 Vienna, Austria
[2] Museum Hist Nat, Dept Mineral, A-1014 Vienna, Austria
[3] Museum Hist Nat, Inst Mineral & Crystallog, A-1014 Vienna, Austria
[4] Univ Witwatersrand, Sch Geosci, Impact Cratering Res Grp, Johannesburg, South Africa
关键词
D O I
暂无
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We studied unshocked and experimentally (at 12, 25, and 28 GPa, with 25, 100, 450, and 750degreesC pre-shock temperatures) shock-metamorphosed Hospital Hill quartzite from South Africa using cathodoluminescence (CL) images and spectroscopy and Raman spectroscopy to document systematic pressure or temperature-related effects that could be used in shock barometry. In general, CL images of all samples show CL-bright luminescent patchy areas and bands in otherwise non-luminescent quartz, as well as CL-dark irregular fractures. Fluid inclusions appear dominant in CL images of the 25 GPa sample shocked at 750degreesC and of the 28 GPa sample shocked at 450degreesC. Only the optical image of our 28 GPa sample shocked at 25degreesC exhibits distinct planar deformation features (PDFs). Cathodoluminescence spectra of unshocked and experimentally shocked samples show broad bands in the near-ultraviolet range and the visible light range at all shock stages, indicating the presence of defect centers on, e.g., SiO(4) groups. No systematic change in the appearance of the CL images was obvious, but the CL spectra do show changes between the shock stages. The Raman spectra are characteristic for quartz in the unshocked and 12 GPa samples. In the 25 and 28 GPa samples, broad bands indicate the presence of glassy SiO(2), while high-pressure polymorphs are not detected. Apparently, some of the CL and Raman spectral properties can be used in shock barometry.
引用
收藏
页码:1187 / 1197
页数:11
相关论文
共 50 条
  • [21] Characterization of atmospheric aerosols in the Antarctic region using Raman Spectroscopy and Scanning Electron Microscopy
    Marina-Montes, Cesar
    Perez-Arribas, Luis, V
    Anzano, Jesus
    Fdez-Ortiz de Vallejuelo, Silvia
    Aramendia, Julene
    Gomez-Nubla, Leticia
    de Diego, Alberto
    Manuel Madariaga, Juan
    Caceres, Jorge O.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2022, 266
  • [22] Use of scanning electron microscopy and Raman spectroscopy for studying the diamond layers of various quality
    Szulc, Adam
    Zorenko, Yuriy
    Mosinska, Lidia
    PRZEMYSL CHEMICZNY, 2012, 91 (01): : 75 - 79
  • [23] Raman spectroscopy and scanning electron microscopy study of a one-coat porcelain enamel
    Henderson, Matthew N.
    Tompsett, Geoffrey A.
    Sammes, Nigel M.
    Ceramic Engineering and Science Proceedings, 1999, 20 (05): : 39 - 51
  • [24] CATHODOLUMINESCENCE SCANNING ELECTRON-MICROSCOPY IN THE STUDY OF SILICATE ROCK MICROSTRUCTURE
    BEHR, HJ
    FRENTZELBEYME, K
    FORTSCHRITTE DER MINERALOGIE, 1987, 65 : 18 - 18
  • [25] Interface roughness of quantum wells - A scanning electron microscopy and cathodoluminescence study
    Jahn, U
    Menniger, J
    Hey, R
    Kwok, SH
    Fujiwara, K
    MICROSCOPY OF SEMICONDUCTING MATERIALS 1995, 1995, 146 : 733 - 736
  • [26] SPATIAL-RESOLUTION OF CATHODOLUMINESCENCE SCANNING ELECTRON-MICROSCOPY OF SEMICONDUCTORS
    PETROV, VI
    GVOZDOVER, RS
    SCANNING, 1991, 13 (06) : 410 - 414
  • [27] Imaging of cathodoluminescence zoning in calcite by scanning electron microscopy and hyperspectral mapping
    Lee, MR
    Martin, RW
    Trager-Cowan, C
    Edwards, PR
    JOURNAL OF SEDIMENTARY RESEARCH, 2005, 75 (02) : 313 - 322
  • [28] Cathodoluminescence and writing of optical patterns on porous silicon by scanning electron microscopy
    Bruska, A
    Chernock, A
    Schulze, S
    Hietschold, M
    APPLIED PHYSICS LETTERS, 1996, 68 (17) : 2378 - 2379
  • [29] Cathodoluminescence of silicon doped aluminum nitride with scanning transmission electron microscopy
    Hauwiller, Matthew R.
    Stowe, David
    Eldred, Timothy B.
    Mita, Seiji
    Collazo, Ramon
    Sitar, Zlatko
    LeBeau, James
    APL MATERIALS, 2020, 8 (09)
  • [30] A comparison of energy dispersive spectroscopy in transmission scanning electron microscopy with scanning transmission electron microscopy
    Carter, Jennifer L. W.
    Uz, Tugce Karakulak
    Ibrahim, Buhari
    Pigott, Jeffrey S.
    Gordon, Jerard, V
    ULTRAMICROSCOPY, 2025, 270