Running error for the evaluation of rational Bezier surfaces through a robust algorithm

被引:2
|
作者
Delgado, J. [1 ]
Pena, J. M. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, E-50009 Zaragoza, Spain
关键词
Roundoff error; Rational surfaces; Running error; Forward error;
D O I
10.1016/j.cam.2010.04.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Running error analysis of the corner cutting algorithm for rational Bezier surfaces is carried out and the sharpness of the corresponding error bounds is shown. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1781 / 1789
页数:9
相关论文
共 50 条
  • [21] Design and modification of developable rational Bezier surfaces
    School of Sciences, Tianjin University, Tianjin 300072, China
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban), 2007, 6 (661-664):
  • [22] Using Farin points for rational Bezier surfaces
    Theisel, H
    COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (08) : 817 - 835
  • [23] Local Progressive Iterative Approximation for Triangular Bezier and Rational Triangular Bezier Surfaces
    Yan, Liping
    Yu, Desheng
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MECHATRONICS AND INDUSTRIAL INFORMATICS, 2015, 31 : 456 - 463
  • [24] Accurate evaluation of Bezier curves and surfaces and the Bernstein-Fourier algorithm
    Delgado, Jorge
    Pena, J. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 113 - 122
  • [25] DEVELOPABLE RATIONAL BEZIER AND B-SPLINE SURFACES
    POTTMANN, H
    FARIN, G
    COMPUTER AIDED GEOMETRIC DESIGN, 1995, 12 (05) : 513 - 531
  • [26] The Degree Reduction of Tensor Product Rational Bezier surfaces
    Shi, Mao
    Ye, Zhenglin
    Kang, Baosheng
    9TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED INDUSTRIAL DESIGN & CONCEPTUAL DESIGN, VOLS 1 AND 2: MULTICULTURAL CREATION AND DESIGN - CAID& CD 2008, 2008, : 674 - +
  • [28] The types of rational (2,1)-Bezier surfaces
    Degen, WLF
    COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (07) : 639 - 648
  • [29] Tunnel-free voxelisation of rational Bezier surfaces
    Wu, ZK
    Lin, F
    Soon, SH
    VISUAL COMPUTER, 2003, 19 (7-8): : 505 - 512
  • [30] Flatness criteria for subdivision of rational Bezier curves and surfaces
    Dyllong, E
    Luther, W
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S713 - S714