Large-area, catalyst-free heteroepitaxy of InAs nanowires on Si by MOVPE

被引:18
|
作者
Cantoro, M. [1 ,2 ]
Wang, G. [1 ,3 ]
Lin, H. C. [1 ,3 ]
Klekachev, A. V. [1 ,2 ]
Richard, O. [1 ]
Bender, H. [1 ]
Kim, T. -G. [1 ,3 ]
Clemente, F. [1 ]
Adelmann, C. [1 ]
van der Veen, M. H. [1 ]
Brammertz, G. [1 ]
Degroote, S. [1 ]
Leys, M. [1 ]
Caymax, M. [1 ]
Heyns, M. M. [1 ,3 ]
De Gendt, S. [1 ,4 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium
[4] Katholieke Univ Leuven, Dept Chem, B-3001 Louvain, Belgium
关键词
III-V semiconductors; electronic transport; InAs; MOVPE; nanowires; Raman spectroscopy; III-V NANOWIRES; OPTOELECTRONIC DEVICES; SILICON NANOWIRES; EPITAXIAL-GROWTH; SCATTERING; TRANSISTORS;
D O I
10.1002/pssa.201026396
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we show the results of experiments of InAs nanowire (NW) growth on (111)-oriented Si wafers. The NWs, grown at 620 degrees C by metal-organic vapor-phase epitaxy, are vertically aligned and similar to 30 nm in diameter. Their structural properties are studied by transmission electron microscopy, evidencing a polytypic character, and the vibrational properties by Raman spectroscopy. An assessment of their electrical transport properties is carried out by measuring back-gated, single InAs NW field-effect transistors. The absence of a catalyst ensures the compatibility of the NW growth process with current CMOS technology. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [41] Controllable Synthesis of Large Scale, Catalyst-free, Lateral ZnO Nanowires Network
    Guan Jian
    Guo Shuxu
    Jiang Haitao
    Gao Fengli
    Lu Wenqiang
    Wang Deqiang
    2016 6TH IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (IEEE 3M-NANO), 2016, : 39 - 42
  • [42] Nucleation conditions for catalyst-free GaN nanowires
    Bertness, K. A.
    Roshko, A.
    Mansfield, L. M.
    Harvey, T. E.
    Sanford, N. A.
    JOURNAL OF CRYSTAL GROWTH, 2007, 300 (01) : 94 - 99
  • [43] Catalyst-free growth of In(As)P nanowires on silicon
    Mattila, M.
    Hakkarainen, T.
    Lipsanen, H.
    Jiang, H.
    Kauppinen, E. I.
    APPLIED PHYSICS LETTERS, 2006, 89 (06)
  • [44] Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires
    Ho, Shu-Te
    Wang, Chiu-Yen
    Liu, Hsiang-Lin
    Lin, Heh-Nan
    CHEMICAL PHYSICS LETTERS, 2008, 463 (1-3) : 141 - 144
  • [45] Catalyst-free growth of large scale Ga2O3 nanowires
    Chang, KW
    Liu, SC
    Chen, LY
    Hong, FCN
    Wu, JJ
    NANOPHASE AND NANOCOMPOSITE MATERIALS IV, 2002, 703 : 129 - 134
  • [46] Catalyst-free synthesis and mechanical characterization of TaC nanowires
    Shiliang Wang
    Liang Ma
    James Lee Mead
    Shin-Pon Ju
    Guodong Li
    Han Huang
    Science China Physics, Mechanics & Astronomy, 2021, 64
  • [47] Catalyst-free synthesis and mechanical characterization of TaC nanowires
    Wang, Shiliang
    Ma, Liang
    Mead, James Lee
    Ju, Shin-Pon
    Li, Guodong
    Huang, Han
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (05)
  • [48] Catalyst-free synthesis and shape control of CdTe nanowires
    Xiaoping Jin
    Marta Kruszynska
    Jürgen Parisi
    Joanna Kolny-Olesiak
    Nano Research, 2011, 4 : 824 - 835
  • [49] Catalyst-free synthesis and shape control of CdTe nanowires
    Jin, Xiaoping
    Kruszynska, Marta
    Parisi, Juergen
    Kolny-Olesiak, Joanna
    NANO RESEARCH, 2011, 4 (09) : 824 - 835
  • [50] Modeling of Catalyst-free Growth Process of ZnO Nanowires
    Kong, Xiangcheng
    Wei, Chuang
    Zhu, Yong
    Cohen, Paul
    Dong, Jingyan
    46TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 46, 2018, 26 : 349 - 358