Weak Galerkin finite-element method for time-fractional nonlinear integro-differential equations

被引:14
|
作者
Wang, Haifeng [1 ]
Xu, Da [1 ]
Guo, Jing [1 ]
机构
[1] Hunan Normal Univ, Minist Educ China, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2020年 / 39卷 / 02期
基金
美国国家科学基金会;
关键词
The time-fractional nonlinear integral differential equation; Weak Galerkin finite-element method; Stability; convergence; Numerical experiments; DIFFERENCE SCHEME; DIFFUSION;
D O I
10.1007/s40314-020-1134-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a fully discrete scheme for one-dimensional (1D) time-fractional nonlinear integro-differential equation is established based on the weak Galerkin finite-element method. The stability and convergence of this scheme are proved. Several numerical experiments are presented to illustrate the theoretical analysis and to show the strong potential of this method.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel
    Jun Zhou
    Da Xu
    Xiuxiu Dai
    Computational and Applied Mathematics, 2019, 38
  • [22] Weak Galerkin finite element method for the parabolic integro-differential equation with weakly singular kernel
    Zhou, Jun
    Xu, Da
    Dai, Xiuxiu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [23] Analysis of a High-Accuracy Numerical Method for Time-Fractional Integro-Differential Equations
    Luo, Ziyang
    Zhang, Xindong
    Wei, Leilei
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [24] ADI Finite Element Galerkin Methods for Two-dimensional Tempered Fractional Integro-differential Equations
    Wenlin Qiu
    Graeme Fairweather
    Xuehua Yang
    Haixiang Zhang
    Calcolo, 2023, 60
  • [25] ADI Finite Element Galerkin Methods for Two-dimensional Tempered Fractional Integro-differential Equations
    Qiu, Wenlin
    Fairweather, Graeme
    Yang, Xuehua
    Zhang, Haixiang
    CALCOLO, 2023, 60 (03)
  • [26] An efficient spline technique for solving time-fractional integro-differential equations
    Abbas, Muhammad
    Aslam, Sadia
    Abdullah, Farah Aini
    Riaz, Muhammad Bilal
    Gepreel, Khaled A.
    HELIYON, 2023, 9 (09)
  • [27] Time-fractional integro-differential equations in power growth function spaces
    Phung Dinh Tran
    Duc Thanh Dinh
    Tuan Kim Vu
    M. Garayev
    H. Guediri
    Fractional Calculus and Applied Analysis, 2023, 26 : 751 - 780
  • [28] ALIKHANOV LINEARIZED GALERKIN FINITE ELEMENT METHODS FOR NONLINEAR TIME-FRACTIONAL SCHRODINGER EQUATIONS
    Qin, Hongyu
    Wu, Fengyan
    Zhou, Boya
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (06): : 1305 - 1324
  • [29] Time-fractional integro-differential equations in power growth function spaces
    Tran, Phung Dinh
    Dinh, Duc Thanh
    Vu, Tuan Kim
    Garayev, M.
    Guediri, H.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (02) : 751 - 780
  • [30] A Weak Galerkin Finite Element Method for High Dimensional Time-fractional Diffusion Equation
    Wang, Xiuping
    Gao, Fuzheng
    Liu, Yang
    Sun, Zhengjia
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386 (386)