Adaptive Fuzzy Control for Trajectory Tracking of Mobile Robot

被引:20
|
作者
Liang, Yuming [1 ,2 ]
Xu, Lihong [1 ]
Wei, Ruihua [3 ]
Hu, Haigen [1 ]
机构
[1] Tongji Univ, Dept Control Sci & Engn, Shanghai 200092, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Mech & Elect Engn, Ganzhou 341000, Jiangxi, Peoples R China
[3] Tongji Univ, Dept Traff & Transportat Engn, Shanghai 200092, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
DESIGN;
D O I
10.1109/IROS.2010.5651060
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory tracking of the mobile robot is one research hot for the robot. For the control system of the two-wheeled differential drive mobile robot being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. A new control scheme combined with the fuzzy PD(Proportional and Differential) control and the separate integral control is proposed in this paper. The control scheme can not only make full use of the advantage of the fuzzy control, but also have the good steady state tracking ability of the integral control. However, this control scheme introduces so many parameters which are difficult to optimize. In order to realize the online adaptive learning of the control parameters, the modified VFSA (Very Fast Simulated Annealing) is used. The simulation results show that the method is feasible, and can quickly approach the conference trajectory in a short time, and the trajectory tracking error is very small.
引用
下载
收藏
页码:4755 / 4760
页数:6
相关论文
共 50 条
  • [21] Adaptive Sliding Mode Trajectory Tracking Control of Mobile Robot with Parameter Uncertainties
    Li Kunpeng
    Wang Xuewen
    Yuan Mingxin
    Li Xiaohu
    Wang Sunan
    IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, 2009, : 148 - +
  • [22] Adaptive trajectory tracking control of a wheeled mobile robot via Lyapunov techniques
    Wang, TY
    Tsai, CC
    IECON 2004 - 30TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOL. 1, 2004, : 389 - 394
  • [23] Improved Trajectory Tracking of Autonomous Mobile Robot based on Adaptive Backstepping Control
    Yang, Gen
    Liao, Hua-li
    Zhou, Jun
    Zhang, Tian-xi
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1596 - 1601
  • [24] An Adaptive Backstepping Trajectory Tracking Control of a Tractor Trailer Wheeled Mobile Robot
    Nguyen Thanh Binh
    Nguyen Anh Tung
    Dao Phuong Nam
    Nguyen Hong Quang
    International Journal of Control, Automation and Systems, 2019, 17 : 465 - 473
  • [25] An Adaptive Backstepping Trajectory Tracking Control of a Tractor Trailer Wheeled Mobile Robot
    Nguyen Thanh Binh
    Nguyen Anh Tung
    Dao Phuong Nam
    Nguyen Hong Quang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2019, 17 (02) : 465 - 473
  • [26] PSO-based adaptive neural control for trajectory tracking of a mobile robot
    Shin J.-H.
    Lee M.
    Journal of Institute of Control, Robotics and Systems, 2020, 26 (06): : 506 - 516
  • [27] Dynamic Trajectory Tracking Control of Mobile Robot
    Fan, Longtao
    Zhang, Yuanheng
    Zhang, Sen
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 728 - 732
  • [28] Adaptive Fuzzy Trajectory-Tracking Control of Uncertain Nonholonomic Mobile Robots
    Yu, Shuanghe
    Liu, Shuang
    Xu, He
    2008 6TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, VOLS 1-3, 2008, : 451 - +
  • [29] Adaptive Fuzzy Control of Wheeled Mobile Robots With Prescribed Trajectory Tracking Performance
    Ding, Wei
    Zhang, Jin-Xi
    Shi, Peng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (08) : 4510 - 4521
  • [30] Fuzzy Reinforcement Learning Based Trajectory-tracking Control of an Autonomous Mobile Robot
    Zaman, Muhammad Qomaruz
    Wu, Hsiu-Ming
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 840 - 845