Mass-lumped edge elements for the lossy Maxwell's equations

被引:0
|
作者
Cohen, G [1 ]
Ferrieres, X [1 ]
Monk, P [1 ]
Pernet, S [1 ]
机构
[1] INRIA, F-78153 Le Chesnay, France
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we describe a mass-lumped edge element method for the lossy Maxwell's equations which enables to save both storage and computing time. Then, we present some comparisons with a Yee scheme which show that this finite element method can do much better than this finite difference method.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 50 条
  • [11] Efficient mixed finite elements for the lossy Maxwell's equations in time-domain
    Cohen, G
    Ferrieres, X
    Monk, P
    Pernet, S
    2003 IEEE INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC), VOLS 1 AND 2, SYMPOSIUM RECORD, 2003, : 788 - 793
  • [12] Superconvergence of the second order cubic edge elements with Maxwell's equations
    Wu, Chao
    Huang, Yunqing
    Yuan, Jinyun
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 387
  • [13] Performance of continuous mass-lumped tetrahedral elements for elastic wave propagation with and without global assembly
    Mulder, W. A.
    Shamasundar, R.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (01) : 414 - 421
  • [14] Homogenization of Maxwell's Equations in Lossy Biperiodic Metamaterials
    Ouchetto, Ouail
    Ouchetto, Hassania
    Zouhdi, Said
    Sekkaki, Abderrahim
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (08) : 4214 - 4219
  • [15] Edge elements on anisotropic meshes and approximation of the Maxwell equations
    Nicaise, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) : 784 - 816
  • [16] A comparison of continuous mass-lumped finite elements with finite differences for 3-D wave propagation
    Zhebel, Elena
    Minisini, Sara
    Kononov, Alexey
    Mulder, Wim A.
    GEOPHYSICAL PROSPECTING, 2014, 62 (05) : 1111 - 1125
  • [17] EFFICIENT QUADRATURE RULES FOR COMPUTING THE STIFFNESS MATRICES OF MASS-LUMPED TETRAHEDRAL ELEMENTS FOR LINEAR WAVE PROBLEMS
    Geevers, S.
    Mulder, W. A.
    van der Vegt, J. J. W.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A1041 - A1065
  • [18] Virtual elements for Maxwell's equations
    da Veiga, L. Beirao
    Dassi, F.
    Manzini, G.
    Mascotto, L.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 116 : 82 - 99
  • [19] Multilevel solution of the time-harmonic Maxwell's equations based on edge elements
    Beck, R
    Hiptmair, R
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1999, 45 (07) : 901 - 920
  • [20] Superconvergence Analysis and PPR Recovery of Arbitrary Order Edge Elements for Maxwell's Equations
    Wang, Lixiu
    Zhang, Qian
    Zhang, Zhimin
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) : 1207 - 1230