Piecewise nonlinear regression with data augmentation

被引:4
|
作者
Mazzoleni, M. [1 ]
Breschi, V [2 ]
Formentin, S. [2 ]
机构
[1] Univ Bergamo, Dept Management Informat & Prod Engn, Via Marconi 5, I-24044 Dalmine, BG, Italy
[2] Politecn Milan, Dept Elect Informat & Bioengn, Via G Ponzio 34-5, I-20133 Milan, Italy
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
关键词
Hybrid System Identification; Nonparametric Methods; Nonlinear System Identification; SYSTEM-IDENTIFICATION;
D O I
10.1016/j.ifaco1.2021.08.396
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Piecewise regression represents a powerful tool to derive accurate yet modular models describing complex phenomena or physical systems. This paper presents an approach for learning PieceWise NonLinear (PWNL) functions in both a supervised and semi-supervised setting. We further equip the proposed technique with a method for the automatic generation of additional unsupervised data, which are leveraged to improve the overall accuracy of the estimate. The performance of the proposed approach is preliminarily assessed on two simple simulation examples, where we show the benefits of using nonlinear local models and artificially generated unsupervised data. Copyright (C) 2021 The Authors.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 50 条
  • [11] Construction of Nonlinear Approximation Schemes for Piecewise Smooth Data
    Yang, Hyoseon
    Yoon, Jungho
    CONSTRUCTIVE APPROXIMATION, 2022, 56 (02) : 445 - 477
  • [12] Nonlinear system identification via data augmentation
    Formentin, Simone
    Mazzoleni, Mirko
    Scandella, Matteo
    Previdi, Fabio
    SYSTEMS & CONTROL LETTERS, 2019, 128 : 56 - 63
  • [13] Construction of Nonlinear Approximation Schemes for Piecewise Smooth Data
    Hyoseon Yang
    Jungho Yoon
    Constructive Approximation, 2022, 56 : 445 - 477
  • [14] Data processing by nonlinear regression analysis
    G. I. Efremov
    T. Yu. Zhuravleva
    B. S. Sazhin
    Theoretical Foundations of Chemical Engineering, 2000, 34 : 194 - 196
  • [15] Data processing by nonlinear regression analysis
    Efremov, GI
    Zhuravleva, TY
    Sazhin, BS
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2000, 34 (02) : 194 - 196
  • [16] One Comprehensive Method to Analyze Semiconductor Manufacturing Data by "Piecewise" Regression
    Gu, Lin
    Yu, Wei
    2020 CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2020 (CSTIC 2020), 2020,
  • [17] THE APPLICATION OF LINEAR PIECEWISE REGRESSION TO BASAL BODY-TEMPERATURE DATA
    TEETER, RA
    BIOMETRICAL JOURNAL, 1985, 27 (07) : 759 - 773
  • [18] Parametric analysis of NSA data by the methods of piecewise multiple linear regression
    Wang, David Y.
    Lin, Ken-Huang
    Lo Huang, Mon-Na
    2006 17TH INTERNATIONAL ZURICH SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY, VOLS 1 AND 2, 2006, : 461 - +
  • [19] Application of Tobit-Piecewise regression in Economics Data Consisting of Outliers
    Mekbunditkul, Titirut
    Ramdacha, Nantawarn
    Klaicharoen, Parinya
    Anantarag, Skulthip
    INTERNATIONAL CONFERENCE ON ECONOMICS AND MANAGEMENT INNOVATIONS (ICEMI 2017), VOL 1, ISSUE 1, 2017, : 302 - 306
  • [20] Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation
    Faicel Chamroukhi
    Journal of Classification, 2016, 33 : 374 - 411