Piecewise nonlinear regression with data augmentation

被引:4
|
作者
Mazzoleni, M. [1 ]
Breschi, V [2 ]
Formentin, S. [2 ]
机构
[1] Univ Bergamo, Dept Management Informat & Prod Engn, Via Marconi 5, I-24044 Dalmine, BG, Italy
[2] Politecn Milan, Dept Elect Informat & Bioengn, Via G Ponzio 34-5, I-20133 Milan, Italy
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
关键词
Hybrid System Identification; Nonparametric Methods; Nonlinear System Identification; SYSTEM-IDENTIFICATION;
D O I
10.1016/j.ifaco1.2021.08.396
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Piecewise regression represents a powerful tool to derive accurate yet modular models describing complex phenomena or physical systems. This paper presents an approach for learning PieceWise NonLinear (PWNL) functions in both a supervised and semi-supervised setting. We further equip the proposed technique with a method for the automatic generation of additional unsupervised data, which are leveraged to improve the overall accuracy of the estimate. The performance of the proposed approach is preliminarily assessed on two simple simulation examples, where we show the benefits of using nonlinear local models and artificially generated unsupervised data. Copyright (C) 2021 The Authors.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 50 条
  • [1] PIECEWISE NONLINEAR REGRESSION VIA DECISION ADAPTIVE TREES
    Vanli, N. Denizcan
    Sayin, Muhammed O.
    Ergut, Salih
    Kozat, Suleyman S.
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 1188 - 1192
  • [2] Nonlinear regression with piecewise affine models based on RBFN
    Sakamoto, M
    Duo, D
    Hashimoto, Y
    Itoh, T
    ARTIFICIAL NEURAL NETWORKS: FORMAL MODELS AND THEIR APPLICATIONS - ICANN 2005, PT 2, PROCEEDINGS, 2005, 3697 : 85 - 90
  • [3] A Comprehensive Approach to Universal Piecewise Nonlinear Regression Based on Trees
    Vanli, N. Denizcan
    Kozat, Suleyman Serdar
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5471 - 5486
  • [4] DISEASE SEVERITY REGRESSION WITH CONTINUOUS DATA AUGMENTATION
    Takezaki, Shumpei
    Tanaka, Kiyohito
    Uchida, Seiichi
    Kadota, Takeaki
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [5] Hydranet: Data Augmentation for Regression Neural Networks
    Dubost, Florian
    Bortsova, Gerda
    Adams, Hieab
    Ikram, M. Arfan
    Niessen, Wiro
    Vernooij, Meike
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 438 - 446
  • [6] PIECEWISE REGRESSION
    MCGEE, VE
    CARLETON, WT
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1970, 65 (331) : 1109 - &
  • [7] Nonlinear regression with censored data
    Heuchenne, Cedric
    Van Keilegom, Ingrid
    TECHNOMETRICS, 2007, 49 (01) : 34 - 44
  • [8] Circular Piecewise Regression with Applications to Cell-Cycle Data
    Rueda, Cristina
    Fernandez, Miguel A.
    Barragan, Sandra
    Mardia, Kanti V.
    Peddada, Shyamal D.
    BIOMETRICS, 2016, 72 (04) : 1266 - 1274
  • [9] IRDA: Implicit data augmentation for deep imbalanced regression
    Zhu, Weiyao
    Wu, Ou
    Yang, Nan
    INFORMATION SCIENCES, 2024, 677
  • [10] How Data Augmentation affects Optimization for Linear Regression
    Hanin, Boris
    Sun, Yi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34