Bifurcation for a reaction-diffusion system with unilateral obstacles with pointwise and integral conditions

被引:8
|
作者
Vaeth, Martin [1 ]
机构
[1] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
Global bifurcation; Degree; Stationary solutions; Reaction-diffusion system; Variational inequality; Inclusion; Signorini boundary condition; Laplace operator; Obstacle problem; Nonlocal condition; Integral condition; Averaging on obstacle atoms; IMPLICIT FUNCTION THEOREM; VARIATIONAL-INEQUALITIES; GLOBAL BIFURCATION; VALUED MAPS; EIGENVALUES; INCLUSIONS;
D O I
10.1016/j.nonrwa.2010.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reaction-diffusion system of activator-inhibitor or substrate-depletion type is considered which is subject to diffusion driven instability. It is shown that obstacles (e.g. a unilateral membrane) for one or both quantities introduce a new bifurcation of spatially non-homogeneous steady states in a parameter domain where the trivial branch is exponentially stable without obstacles. The obstacles are modeled in terms of inclusions. Moreover, simultaneously some of the obstacles can be modeled also using nonlocal integral conditions. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:817 / 836
页数:20
相关论文
共 50 条
  • [11] CRITICAL POINTS FOR REACTION-DIFFUSION SYSTEM WITH ONE AND TWO UNILATERAL CONDITIONS
    Eisner, Jan
    Zilavy, Jan
    ARCHIVUM MATHEMATICUM, 2023, 59 (02): : 173 - 180
  • [12] Global Bifurcation for a Reaction-Diffusion System with Inclusions
    Eisner, Jan
    Kucera, Milan
    Vaeth, Martin
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2009, 28 (04): : 373 - 409
  • [13] Location of Bifurcation Points for a Reaction-Diffusion System with Neumann-Signorini Conditions
    Eisner, Jan
    Vaeth, Martin
    ADVANCED NONLINEAR STUDIES, 2011, 11 (04) : 809 - 836
  • [14] Bifurcation in skew-symmetric reaction-diffusion systems with unilateral terms
    Navratil, Josef
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (02)
  • [15] BIFURCATION AND REACTION-DIFFUSION SPECTROSCOPY
    SCHIFFMANN, Y
    MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) : 135 - 145
  • [16] Bifurcation points for a reaction-diffusion system with two inequalities
    Eisner, Jan
    Kucera, Milan
    Vaeth, Martin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 176 - 194
  • [17] BIFURCATION STUDIES IN REACTION-DIFFUSION
    MANORANJAN, VS
    MITCHELL, AR
    SLEEMAN, BD
    YU, KP
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (01) : 27 - 37
  • [18] Hopf bifurcation in a reaction-diffusion system with conservation of mass
    Sakamoto, Takashi Okuda
    NONLINEARITY, 2013, 26 (07) : 2027 - 2049
  • [19] Stability and bifurcation in a reaction-diffusion model with nonlinear boundary conditions
    Li, Shangzhi
    Guo, Shangjiang
    APPLIED MATHEMATICS LETTERS, 2023, 145
  • [20] HOMOGENIZATION OF ATTRACTORS TO REACTION-DIFFUSION SYSTEM IN A MEDIUM WITH RANDOM OBSTACLES
    Bekmaganbetov, Kuanysh a.
    Chechkin, Gregory a.
    Chepyzhov, Vladimir v.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (11) : 3474 - 3490