Lines on cubic surfaces, Witt invariants and Stiefel-Whitney classes

被引:2
|
作者
Bayer-Fluckiger, Eva [1 ]
Serre, Jean-Pierre [2 ]
机构
[1] EPFL FSB MATH, Stn 8, CH-1015 Lausanne, Switzerland
[2] Coll France, 3 Rue Ulm, F-75005 Paris, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2021年 / 32卷 / 05期
关键词
D O I
10.1016/j.indag.2020.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this note is to give a formula expressing the trace form associated with the 27 lines of a cubic surface. (C) 2020 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:920 / 938
页数:19
相关论文
共 50 条
  • [41] Stiefel-Whitney classes and immersions of orientable and Spin manifolds
    Davis, Donald M.
    Wilson, W. Stephen
    TOPOLOGY AND ITS APPLICATIONS, 2022, 307
  • [42] Stiefel-Whitney classes and topological phases in band theory
    Ahn, Junyeong
    Park, Sungjoon
    Kim, Dongwook
    Kim, Youngkuk
    Yang, Bohm-Jung
    CHINESE PHYSICS B, 2019, 28 (11)
  • [44] STIEFEL-WHITNEY INVARIANTS OF QUADRATIC FORMS OVER LOCAL RINGS
    HORNIX, EAM
    JOURNAL OF ALGEBRA, 1973, 26 (02) : 258 - 279
  • [45] The Stiefel-Whitney spark
    Zweck, JW
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (02): : 325 - 351
  • [46] On the Stiefel-Whitney classes of the adjoint representation of E8
    Ohsita, A
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2004, 44 (03): : 679 - 684
  • [47] The Stiefel-Whitney classes of moment-angle manifolds are trivial
    Hasui, Sho
    Kishimoto, Daisuke
    Kizu, Akatsuki
    FORUM MATHEMATICUM, 2022, 34 (06) : 1463 - 1474
  • [48] TOTAL CHERN AND STIEFEL-WHITNEY CLASSES ARE NOT INFINITE LOOP MAPS
    SNAITH, V
    ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (02) : 300 - 304
  • [49] KERVAIRE INVARIANT OF MANIFOLDS WITH FEW NONZERO STIEFEL-WHITNEY CLASSES
    PAPASTAV.SG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A376 - A377
  • [50] STIEFEL-WHITNEY CLASSES OF A SYMMETRIC BILINEAR FORM - A FORMULA OF SERRE
    SNAITH, V
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1985, 28 (02): : 218 - 222