Coelenterazine analogues emit red-shifted bioluminescence with NanoLuc

被引:0
|
作者
Shakhmin, Anton [1 ]
Hall, Mary P. [2 ]
Machleidt, Thomas [2 ]
Walker, Joel R. [1 ]
Wood, Keith V. [2 ]
Kirkland, Thomas A. [1 ]
机构
[1] Promega Biosci LLC, 277 Granada Dr, San Luis Obispo, CA 93401 USA
[2] Promega Corp, 2800 Woods Hollow Rd, Madison, WI 53711 USA
关键词
IMAGING IN-VIVO; RENILLA LUCIFERASE; SUBSTRATE; OPLOPHORUS; REPORTER; PROTEIN; BRET; CHEMILUMINESCENCE; LUMINESCENCE; SUBSTITUTION;
D O I
10.1039/c7ob01985hrsc.li/obc
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
We report the synthesis and characterization of novel coelenterazine analogues that demonstrate a red-shift in their bioluminescent emission with NanoLuc luciferase. These coelenterazines can be tuned to shift the bioluminescent emission from blue light in the native system. In particular, direct attachment of an aryl moiety to the imidazopyrazinone core of furimazine at the C8 position provides a significant red-shift while maintaining reasonable light output. In addition, modification of the C6 aryl moiety provided additive red-shifts, and by combining the most promising modifications we report a coelenterazine with a maximum emission near 600 nm with NanoLuc. Finally, we show that this new bioluminescent system is capable of efficient BRET to far-red fluorophores. We anticipate these new principles of NanoLuc substrate design will impact applications that depend on shifting the colour of emission to the red, most notably in vivo bioluminescent imaging.
引用
收藏
页码:8559 / 8567
页数:9
相关论文
共 50 条
  • [21] A red-shifted fluorescent substrate for aldehyde dehydrogenase
    Il Minn
    Haofan Wang
    Ronnie C. Mease
    Youngjoo Byun
    Xing Yang
    Julia Wang
    Steven D. Leach
    Martin G. Pomper
    Nature Communications, 5
  • [22] A red-shifted fluorescent substrate for aldehyde dehydrogenase
    Minn, Il
    Wang, Haofan
    Mease, Ronnie C.
    Byun, Youngjoo
    Yang, Xing
    Wang, Julia
    Leach, Steven D.
    Pomper, Martin G.
    NATURE COMMUNICATIONS, 2014, 5
  • [23] Acridinium and Acridone Constructs with Red-Shifted Emission
    Swift, Kerry M.
    Haack, Richard
    Tikhomirova, Anastasiia A.
    Hershberger, Stefan
    Tetin, Sergey Y.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 470A - 470A
  • [24] Photochemical Properties of the Red-shifted Channelrhodopsin Chrimson
    Urmann, David
    Lorenz, Charlotte
    Linker, Stephanie M.
    Braun, Markus
    Wachtveitl, Josef
    Bamann, Christian
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2017, 93 (03) : 782 - 795
  • [25] Acridone and acridinium constructs with red-shifted emission
    Tikhomirova, Anastasiia A.
    Swift, Kerry M.
    Haack, Richard A.
    Macdonald, Patrick J.
    Hershberger, Stefan J.
    Tetin, Sergey Y.
    METHODS AND APPLICATIONS IN FLUORESCENCE, 2021, 9 (02):
  • [26] Rational engineering of a red-shifted mRuby variant
    Hense, A.
    Nienhaus, K.
    Nienhaus, G. U.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S55 - S55
  • [27] Reversible, Red-Shifted Photoisomerization in Protonated Azobenzenes
    Rickhoff, Jonas
    Arndt, Niklas B.
    Boeckmann, Marcus
    Doltsinis, Nikos L.
    Ravoo, Bart Jan
    Kortekaas, Luuk
    JOURNAL OF ORGANIC CHEMISTRY, 2022, 87 (16): : 10605 - 10612
  • [28] Broad red-shifted lines as a signature of outflow
    Kazanas, D
    Titarchuk, L
    Becker, PA
    X-RAY TIMING 2003: ROSSI AND BEYOND, 2004, 714 : 154 - 156
  • [29] A red-shifted Bioluminescence Resonance Energy Transfer (BRET) biosensing system for rapid measurement of plasmin activity in human plasma
    Weihs, Felix
    Peh, Alex
    Dacres, Helen
    ANALYTICA CHIMICA ACTA, 2020, 1102 : 99 - 108
  • [30] Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs
    Weihs F.
    Wang J.
    Pfleger K.D.G.
    Dacres H.
    Analytica Chimica Acta: X, 2020, 6