Convolution operators with singular measures of fractional type on the Heisenberg group

被引:1
|
作者
Godoy, Tomas [1 ]
Rocha, Pablo [1 ]
机构
[1] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina
关键词
singular measures; group Fourier transform; Heisenberg group; convolution operators; P-IMPROVING PROPERTIES; CURVES;
D O I
10.4064/sm8781-12-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Heisenberg group H-n = C-n x R. Let mu(gamma) be the fractional Borel measure on H-n defined by mu(gamma) (E) = integral(Cn) chi E(w, phi(w)) Pi(n)(j=1) eta(j)(vertical bar w(j)vertical bar(2))vertical bar wj vertical bar(-gamma/n) dw, where 0 < gamma < 2n, phi(w) = Sigma(n)(j=1) a(j)vertical bar jw(j)vertical bar(2), w = (w1 , ... , wn) is an element of C-n, a(j) is an element of R, and eta(j) is an element of C-c(infinity)(R). In this paper we study the set of pairs (p, q) such that right convolution with mu(gamma) is bounded from L-p(H-n) into L-q(H-n).
引用
收藏
页码:213 / 228
页数:16
相关论文
共 50 条
  • [31] Lp ESTIMATES FOR SCHRODINGER TYPE OPERATORS ON THE HEISENBERG GROUP
    Yu, Liu
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (02) : 425 - 443
  • [32] LP-IMPROVING PROPERTIES OF CERTAIN SINGULAR MEASURES ON THE HEISENBERG GROUP
    Rocha, Pablo
    Blanca, Bahia
    MATHEMATICA BOHEMICA, 2022, 147 (01): : 131 - 140
  • [33] Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
    Vagif S. Guliyev
    Ali Akbulut
    Faiq M. Namazov
    Advances in Difference Equations, 2018
  • [34] ON CONVOLUTION SQUARES OF SINGULAR MEASURES
    SAEKI, S
    ILLINOIS JOURNAL OF MATHEMATICS, 1980, 24 (02) : 225 - 232
  • [35] The Weighted Lp and BMO Estimates for Fractional Hausdorff Operators on the Heisenberg Group
    Zhang, Guohua
    Li, Qianqian
    Wu, Qingyan
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [36] A boundedness criterion for singular integral operators of convolution type on the Fock space
    Cao, Guangfu
    Li, Ji
    Shen, Minxing
    Wick, Brett D.
    Yan, Lixin
    ADVANCES IN MATHEMATICS, 2020, 363
  • [37] Operators for convolution of fuzzy measures
    Bronevich, AG
    Lepskiy, AE
    SOFT METHODS IN PROBABILITY, STATISTICS AND DATA ANALYSIS, 2002, : 84 - 91
  • [38] REMARKS ON SINGULAR CONVOLUTION-OPERATORS
    SEEGER, A
    STUDIA MATHEMATICA, 1990, 97 (02) : 91 - 114
  • [39] SINGULAR CONVOLUTION OPERATORS WITH A DISCONTINUOUS SYMBOL
    KARAPETYANTS, NK
    SAMKO, SG
    SIBERIAN MATHEMATICAL JOURNAL, 1975, 16 (01) : 35 - 48
  • [40] INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS
    FEFFERMAN, C
    ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2): : 9 - +