Convolution operators with singular measures of fractional type on the Heisenberg group

被引:1
|
作者
Godoy, Tomas [1 ]
Rocha, Pablo [1 ]
机构
[1] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina
关键词
singular measures; group Fourier transform; Heisenberg group; convolution operators; P-IMPROVING PROPERTIES; CURVES;
D O I
10.4064/sm8781-12-2017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Heisenberg group H-n = C-n x R. Let mu(gamma) be the fractional Borel measure on H-n defined by mu(gamma) (E) = integral(Cn) chi E(w, phi(w)) Pi(n)(j=1) eta(j)(vertical bar w(j)vertical bar(2))vertical bar wj vertical bar(-gamma/n) dw, where 0 < gamma < 2n, phi(w) = Sigma(n)(j=1) a(j)vertical bar jw(j)vertical bar(2), w = (w1 , ... , wn) is an element of C-n, a(j) is an element of R, and eta(j) is an element of C-c(infinity)(R). In this paper we study the set of pairs (p, q) such that right convolution with mu(gamma) is bounded from L-p(H-n) into L-q(H-n).
引用
收藏
页码:213 / 228
页数:16
相关论文
共 50 条