Reaction rates for mesoscopic reaction-diffusion kinetics

被引:32
|
作者
Hellander, Stefan [1 ]
Hellander, Andreas [2 ]
Petzold, Linda [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 02期
基金
美国国家科学基金会;
关键词
SIMULATING BIOCHEMICAL NETWORKS; FUNCTION REACTION DYNAMICS; STOCHASTIC SIMULATION; MASTER EQUATION; TIME; TRANSPORT; MODELS; SPACE;
D O I
10.1103/PhysRevE.91.023312
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Reaction-diffusion processes
    CHEN Mufa Beijing Normal University Beijing 100875
    Chinese Science Bulletin, 1998, (17) : 1409 - 1420
  • [42] Reaction-Diffusion Problems
    Linss, Torsten
    LAYER-ADAPTED MESHES FOR REACTION-CONVECTION-DIFFUSION PROBLEMS, 2010, 1985 : 247 - 256
  • [43] Computing macroscopic reaction rates in reaction-diffusion systems using Monte Carlo simulations
    Swailem, Mohamed
    Tauber, Uwe C.
    PHYSICAL REVIEW E, 2024, 110 (01)
  • [44] REACTION-DIFFUSION COMPUTERS
    Motoike, Ikuko
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2006, 21 (05) : 381 - 383
  • [45] Reaction-diffusion processes
    Chen, M
    CHINESE SCIENCE BULLETIN, 1998, 43 (17): : 1409 - 1420
  • [46] Nonlocal eigenvalue problem and the stability of spikes for reaction-diffusion systems with fractional reaction rates
    Wei, JC
    Winter, M
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (06): : 1529 - 1543
  • [47] COUPLED MESOSCOPIC AND MICROSCOPIC SIMULATION OF STOCHASTIC REACTION-DIFFUSION PROCESSES IN MIXED DIMENSIONS
    Hellander, Andreas
    Hellander, Stefan
    Loetstedt, Per
    MULTISCALE MODELING & SIMULATION, 2012, 10 (02): : 585 - 611
  • [48] Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion
    Bedeaux, D.
    Pagonabarraga, I.
    Ortiz de Zarate, J. M.
    Sengers, J. V.
    Kjelstrup, S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (39) : 12780 - 12793
  • [49] A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems
    Sayyidmousavi, Alireza
    Rohlf, Katrin
    Ilie, Silvana
    MATHEMATICAL BIOSCIENCES, 2019, 312 : 23 - 32
  • [50] Reaction-diffusion and phase waves occurring in a class of scalar reaction-diffusion equations
    Needham, DJ
    Barnes, AN
    NONLINEARITY, 1999, 12 (01) : 41 - 58