Characterising elliptic solids of Q(4, q), q even

被引:3
|
作者
Barwick, S. G. [1 ]
Hui, Alice M. W. [2 ]
Jackson, Wen-Ai [1 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] BNU HKBU United Int Coll, Stat Program, Zhuhai, Peoples R China
基金
中国国家自然科学基金;
关键词
Projective geometry; Quadrics; Hyperplanes; SETS;
D O I
10.1016/j.disc.2020.111857
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let epsilon be a set of solids (hyperplanes) in PG(4, q), q even, q > 2, such that every point of PG(4, q) lies in either 0, 1/2 (q(3) - q(2)) or 1/2 q(3) solids of epsilon, and every plane of PG(4, q) lies in either 0, 1/2q or q solids of epsilon. This article shows that epsilon is either the set of solids that are disjoint from a hyperoval, or the set of solids that meet a non-singular quadric Q(4, q) in an elliptic quadric. Crown Copyright (C) 2020 Published by Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the geometry of a (q+1)-arc of PG(3, q), q even
    Ceria, Michela
    Pavese, Francesco
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [22] Subquadrangles of generalized quadrangles of order (q2, q), q even
    O'Keefe, CM
    Penttila, T
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2001, 94 (02) : 218 - 229
  • [23] Characterising pointsets in PG(4, q) that correspond to conics
    Barwick, S. G.
    Jackson, Wen-Ai
    DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (02) : 317 - 332
  • [24] GENERALIZED QUADRANGLES OF ORDER (Q,Q(2)), Q-EVEN, CONTAINING W(Q) AS A SUBQUADRANGLE
    BROWN, MR
    GEOMETRIAE DEDICATA, 1995, 56 (03) : 299 - 306
  • [25] Ovoidal packings of PG(3, q) for even q
    Bagchi, Bhaskar
    Sastry, N. S. Narasimha
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2213 - 2217
  • [26] A characterization of the Grassmann embedding of H(q), with q even
    De Wispelaere, A.
    Thas, J. A.
    Van Maldeghem, H.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 55 (2-3) : 121 - 130
  • [27] Intriguing sets of W(5, q), q even
    Cossidente, Antonio
    Pavese, Francesco
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 127 : 303 - 313
  • [28] Ovoidal fibrations in PG(3, q), q even
    Sastry, N. S. Narasimha
    Shukla, R. P.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [29] A characterization of the Grassmann embedding of H(q), with q even
    A. De Wispelaere
    J. A. Thas
    H. Van Maldeghem
    Designs, Codes and Cryptography, 2010, 55 : 121 - 130
  • [30] On the Characters of the Maximal Subgroup 1>~(Sp4(q)) of the Symplectic Group Sp4(q), q-Even
    M.I.ALALI
    C.H.HERING
    J.SCH EFFER
    Acta Mathematica Sinica(English Series), 2001, 17 (04) : 621 - 630