Characterising elliptic solids of Q(4, q), q even

被引:3
|
作者
Barwick, S. G. [1 ]
Hui, Alice M. W. [2 ]
Jackson, Wen-Ai [1 ]
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] BNU HKBU United Int Coll, Stat Program, Zhuhai, Peoples R China
基金
中国国家自然科学基金;
关键词
Projective geometry; Quadrics; Hyperplanes; SETS;
D O I
10.1016/j.disc.2020.111857
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let epsilon be a set of solids (hyperplanes) in PG(4, q), q even, q > 2, such that every point of PG(4, q) lies in either 0, 1/2 (q(3) - q(2)) or 1/2 q(3) solids of epsilon, and every plane of PG(4, q) lies in either 0, 1/2q or q solids of epsilon. This article shows that epsilon is either the set of solids that are disjoint from a hyperoval, or the set of solids that meet a non-singular quadric Q(4, q) in an elliptic quadric. Crown Copyright (C) 2020 Published by Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Characterising the secant lines of Q(4, q), q even
    Barwick, Susan G.
    Hui, Alice M. W.
    Jackson, Wen-Ai
    Schillewaert, Jeroen
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 182
  • [2] CHARACTERIZATION OF PSL(4,Q), Q EVEN, Q GREATER-THAN 4
    LAMBERT, PJ
    ILLINOIS JOURNAL OF MATHEMATICS, 1977, 21 (02) : 255 - 265
  • [3] Characterising elliptic and hyperbolic hyperplanes of the parabolic quadric Q(2n, q)
    Schillewaert, Jeroen
    Van de Voorde, Geertrui
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 78
  • [4] Structure of a code related to Sp(4, q), q even
    N. S. Narasimha Sastry
    R. P. Shukla
    Proceedings Mathematical Sciences, 2007, 117 : 457 - 470
  • [5] Some geometry of the isomorphism Sp(4, q) ≅ O(5, q), q even
    Cossidente A.
    Vereecke S.K.J.
    Journal of Geometry, 2001, 70 (1) : 28 - 37
  • [6] Structure of a code related to Sp(4, q), q even
    Sastry, N. S. Narasimha
    Shukla, R. P.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04): : 457 - 470
  • [7] Small interactions in the groups Sp(4) (q) for even q
    Belonogov, V. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 19 - 37
  • [8] A spectrum result on maximal partial ovoids of the generalized quadrangle Q(4, q), q even
    Roessing, C.
    Storme, L.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (01) : 349 - 361
  • [9] On 1-Systems of Q(6, q), q Even
    D. Luyckx
    J. A. Thas
    Designs, Codes and Cryptography, 2003, 29 : 179 - 197
  • [10] On 1-systems of Q(6,q),q even
    Luyckx, D
    Thas, JA
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 29 (1-3) : 179 - 197