Taylor Moment Expansion for Continuous-Discrete Gaussian Filtering

被引:7
|
作者
Zhao, Zheng [1 ]
Karvonen, Toni [2 ]
Hostettler, Roland [3 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo 02150, Finland
[2] Alan Turing Inst, London NW1 2DB, England
[3] Uppsala Univ, Dept Engn Sci, S-75121 Uppsala, Sweden
基金
芬兰科学院;
关键词
Indium tin oxide; Taylor series; State-space methods; Numerical stability; Mathematical model; Time measurement; Thermal stability; Continuous-discrete state-space model; Gaussian filtering; Kalman filtering; stochastic differential equation (SDE); Taylor moment expansion (TME); STABILITY;
D O I
10.1109/TAC.2020.3047367
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article is concerned with Gaussian filtering in nonlinear continuous-discrete state-space models. We propose a novel Taylor moment expansion (TME) Gaussian filter, which approximates the moments of the stochastic differential equation with a temporal Taylor expansion. Differently from classical linearization or Ito-Taylor approaches, the Taylor expansion is formed for the moment functions directly and in time variable, not by using a Taylor expansion on the nonlinear functions in the model. We analyze the theoretical properties, including the positive definiteness of the covariance estimate and stability of the TME filter. By numerical experiments, we demonstrate that the proposed TME Gaussian filter significantly outperforms the state-of-the-art methods in terms of estimation accuracy and numerical stability.
引用
收藏
页码:4460 / 4467
页数:8
相关论文
共 50 条
  • [21] A new continuous-discrete particle filter for continuous-discrete nonlinear systems
    Xia, Yuanqing
    Deng, Zhihong
    Li, Li
    Geng, Xiumei
    INFORMATION SCIENCES, 2013, 242 : 64 - 75
  • [22] Non-Linear Gaussian Smoothing With Taylor Moment Expansion
    Zhao, Zheng
    Sarkka, Simo
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 80 - 84
  • [23] Optimal Continuous-Discrete Linear Filter and Moment Equations for Nonlinear Diffusions
    Cacace, Filippo
    Cusimano, Valerio
    Germani, Alfredo
    Palumbo, Pasquale
    Papi, Marco
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (10) : 3961 - 3976
  • [24] Third-order Continuous-Discrete Filtering For a Stochastic Duffing System
    Patel, Hiren G.
    2015 INTERNATIONAL CONFERENCE ON INDUSTRIAL INSTRUMENTATION AND CONTROL (ICIC), 2015, : 181 - 186
  • [25] Third-Order Continuous-Discrete Filtering for a Nonlinear Dynamical System
    Patel, Hiren G.
    Sharma, Shambhu N.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2014, 9 (03):
  • [26] H∞ filtering for time-invariant continuous-discrete linear systems
    Lee, Sang-Chul
    Ahn, Hyo-Sung
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (03): : 1316 - 1334
  • [27] SQUARE-ROOT DATA ARRAY SOLUTION OF CONTINUOUS-DISCRETE FILTERING PROBLEM
    BIERMAN, GJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (06) : 675 - 676
  • [28] Nonlinear continuous-discrete filtering using kernel density estimatesand functional integrals
    Singer, H
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 2003, 27 (01): : 1 - 28
  • [29] Continuous-discrete smoothing of diffusions
    Mider, Marcin
    Schauer, Moritz
    van der Meulen, Frank
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4295 - 4342
  • [30] Continuous-Discrete Multiple Target Filtering: PMBM, PHD and CPHD Filter Implementations
    Garcia-Fernandez, Angel F.
    Maskell, Simon
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 1300 - 1314