Rice Cultivars Under Salt Stress Show Differential Expression of Genes Related to the Regulation of Na+/K+ Balance

被引:30
|
作者
Farooq, Muhammad [1 ]
Park, Jae-Ryoung [1 ]
Jang, Yoon-Hee [1 ]
Kim, Eun-Gyeong [1 ]
Kim, Kyung-Min [1 ]
机构
[1] Kyungpook Natl Univ, Coll Agr & Life Sci, Div Plant Biosci, Sch Appl Biosci, Daegu, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Na+/K+ homeostasis; cultivar Pokkali; cultivar IR28; high-affinity K+ transporter family; sodium; proton exchangers family; salt overly sensitive; NUTRIENT COMPOSITION; OSMOTIC ADJUSTMENT; HKT TRANSPORTERS; SODIUM-TRANSPORT; TOLERANCE; SALINITY; GROWTH; POTASSIUM; HOMEOSTASIS; TOMATO;
D O I
10.3389/fpls.2021.680131
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soil salinity is a major problem in agriculture because high accumulation of Na+ ions in plants causes toxicity that can result in yield reduction. Na+/K+ homeostasis is known to be important for salt tolerance in plants. Na+/K+ homeostasis in rice (Oryza sativa L.) involves nine high-affinity K+ transporter (HKT) encoding Na+-K+ symporter, five OsNHX Na+/H+ antiporters, and OsSOS1 Na+/K+ antiporter genes. In the present study, we investigated various molecular and physiological processes to evaluate germination rate, growth pattern, ion content, and expression of OsHKT, OsNHX, and OsSOS1genes related to Na+/K+ homeostasis in different rice genotypes under salt stress. We found a significant increase in the germination percentage, plant vigor, Na+/K+ ratio, and gene expression of the OsHKT family in both the roots and shoots of the Nagdong cultivar and salt-tolerant cultivar Pokkali. In the roots of Cheongcheong and IR28 cultivars, Na+ ion concentrations were found to be higher than K+ ion concentrations. Similarly, high expression levels of OsHKT1, OsHKT3, and OsHKT6 were observed in Cheongcheong, whereas expression levels of OsHKT9 was high in IR28. The expression patterns of OsNHX and OsSOS1 and regulation of other micronutrients differed in the roots and shoots regions of rice and were generally increased by salt stress. The OsNHX family was also expressed at high levels in the roots of Nagdong and in the roots and shoots of Pokkali; in contrast, comparatively low expression levels were observed in the roots and shoots of Cheongcheong and IR28 (with the exception of high OsNHX1 expression in the roots of IR28). Furthermore, the OsSOS1 gene was highly expressed in the roots of Nagdong and shoots of Cheongcheong. We also observed that salt stress decreases chlorophyll content in IR28 and Pokkali but not in Cheongcheong and Nagdong. This study suggests that under salt stress, cultivar Nagdong has more salt-tolerance than cultivar Cheongcheong.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Arm location of Lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress
    Deal, KR
    Goyal, S
    Dvorak, J
    EUPHYTICA, 1999, 108 (03) : 193 - 198
  • [12] Osmotic stress affects growth, content of chlorophyll, abscisic acid, Na+, and K+, and expression of novel NAC genes in contrasting rice cultivars
    Garcia-Morales, S.
    Gomez-Merino, F. C.
    Trejo-Tellez, L. I.
    Tavitas-Fuentes, L.
    Hernandez-Aragon, L.
    BIOLOGIA PLANTARUM, 2018, 62 (02) : 307 - 317
  • [13] Exogenous SA Affects Rice Seed Germination under Salt Stress by Regulating Na+/K+ Balance and Endogenous GAs and ABA Homeostasis
    Liu, Zhiguo
    Ma, Chunyang
    Hou, Lei
    Wu, Xiuzhe
    Wang, Dan
    Zhang, Li
    Liu, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [14] The coordinated regulation of Na+ and K+ in Hordeum brevisubulatum responding to time of salt stress
    Wang, Chun-Mei
    Xia, Zeng-Run
    Wu, Guo-Qiang
    Yuan, Hui-Jun
    Wang, Xin-Rui
    Li, Jin-hua
    Tian, Fu-Ping
    Zhang, Qian
    Zhu, Xin-Qiang
    He, Jiong-Jie
    Kumar, Tanweer
    Wang, Xiao-Li
    Zhang, Jin-Lin
    PLANT SCIENCE, 2016, 252 : 358 - 366
  • [15] The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response
    Hua Qin
    Rongfeng Huang
    Molecular Breeding, 2020, 40
  • [16] The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response
    Qin, Hua
    Huang, Rongfeng
    MOLECULAR BREEDING, 2020, 40 (05)
  • [17] K+ and Na+ transport contribute to K+/Na+ homeostasis in Pyropia haitanensis under hypersaline stress
    Chen, Tianxiang
    Wang, Wenlei
    Xu, Kai
    Xu, Yan
    Ji, Dehua
    Chen, Changsheng
    Xie, Chaotian
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2019, 40
  • [18] Melatonin enhances Na+/K+ homeostasis in rice seedlings under salt stress through increasing the root H+-pump activity and Na+/K+ transporters sensitivity to ROS/RNS
    Yan, Feiyu
    Wei, Haimin
    Ding, Yanfeng
    Li, Weiwei
    Chen, Lin
    Ding, Chengqiang
    Tang, She
    Jiang, Yu
    Liu, Zhenghui
    Li, Ganghua
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2021, 182
  • [19] S-ABA Enhances Rice Salt Tolerance by Regulating Na+/K+ Balance and Hormone Homeostasis
    Jiang, Wenxin
    Wang, Xi
    Wang, Yaxin
    Du, Youwei
    Zhang, Shuyu
    Zhou, Hang
    Feng, Naijie
    Zheng, Dianfeng
    Ma, Guohui
    Zhao, Liming
    METABOLITES, 2024, 14 (04)
  • [20] AcPMP3 regulates cellular Na+ and K+ accumulation under salt stress
    Ueda, A
    Inada, M
    Takabe, T
    PLANT AND CELL PHYSIOLOGY, 2005, 46 : S56 - S56