共 50 条
The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin
被引:165
|作者:
Kajava, AV
Aebi, U
Steven, AC
机构:
[1] CNRS, FRE 2593, Ctr Rech Biochim Macromol, F-34293 Montpellier, France
[2] Univ Basel, Biozentrum, ME Muller Inst Struct Biol, CH-4056 Basel, Switzerland
[3] NIAMSD, Struct Biol Lab, NIH, Bethesda, MD 20892 USA
关键词:
atomic structure;
diabetes mellitus;
islet amyloid;
fibrils;
D O I:
10.1016/j.jmb.2005.02.029
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Human amylin is a 37 amino acid residue peptide hormone whose fibrillogenesis has been correlated with type 2 diabetes. These fibrils are rope-like bundles of several 5 nm diameter protofilaments. Here, we propose, as a model for the protofilament, a variant of the parallel superpleated beta-structure previously derived for amyloid filaments of the yeast prion Ure2p. In the amylin model, individual polypeptides from residues 9 to 37 have a planar S-shaped fold with three beta-strands. These serpentines are stacked in register, with a 0.47 nm axial rise and a small rotational twist per step, generating an array of three parallel P-sheets in cross-beta conformation. The interior, the two "bays" sandwiched between adjacent sheets, are occupied by non-polar and by polar/uncharged residues that are predicted to form H-bonded ladders, similar to those found in P-helical proteins. The N-terminal peptide containing a disulfide bond occupies an extraneous peripheral position in the protofilament. The left-handed twist of the beta-sheets is shown to underlie left-handed coiling of amylin protofilaments in fibrils. The model is consistent with current biophysical, biochemical and genetic data and, in particular, affords a plausible explanation for why rodent amylin does not form fibrils. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:247 / 252
页数:6
相关论文