Menger remainders of topological groups

被引:6
|
作者
Bella, Angelo [1 ]
Tokgoz, Secil [2 ]
Zdomskyy, Lyubomyr [3 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, Viale A Doria 6, I-95125 Catania, Italy
[2] Hacettepe Univ, Dept Math, Fac Sci, TR-06800 Beytepe, Turkey
[3] Univ Vienna, Kurt Godel Res Ctr Math Log, Wahringer Str 25, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Remainder; Topological group; Menger space; Hurewicz space; Scheepers space; Ultrafilter; Forcing; COMBINATORICS;
D O I
10.1007/s00153-016-0493-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss what kind of constrains combinatorial covering properties of Menger, Scheepers, and Hurewicz impose on remainders of topological groups. For instance, we show that such a remainder is Hurewicz if and only it is -compact. Also, the existence of a Scheepers non--compact remainder of a topological group follows from CH and yields a P-point, and hence is independent of ZFC. We also make an attempt to prove a dichotomy for the Menger property of remainders of topological groups in the style of Arhangel'skii.
引用
收藏
页码:767 / 784
页数:18
相关论文
共 50 条