Menger remainders of topological groups

被引:6
|
作者
Bella, Angelo [1 ]
Tokgoz, Secil [2 ]
Zdomskyy, Lyubomyr [3 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, Viale A Doria 6, I-95125 Catania, Italy
[2] Hacettepe Univ, Dept Math, Fac Sci, TR-06800 Beytepe, Turkey
[3] Univ Vienna, Kurt Godel Res Ctr Math Log, Wahringer Str 25, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Remainder; Topological group; Menger space; Hurewicz space; Scheepers space; Ultrafilter; Forcing; COMBINATORICS;
D O I
10.1007/s00153-016-0493-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we discuss what kind of constrains combinatorial covering properties of Menger, Scheepers, and Hurewicz impose on remainders of topological groups. For instance, we show that such a remainder is Hurewicz if and only it is -compact. Also, the existence of a Scheepers non--compact remainder of a topological group follows from CH and yields a P-point, and hence is independent of ZFC. We also make an attempt to prove a dichotomy for the Menger property of remainders of topological groups in the style of Arhangel'skii.
引用
收藏
页码:767 / 784
页数:18
相关论文
共 50 条
  • [1] Menger remainders of topological groups
    Angelo Bella
    Seçil Tokgöz
    Lyubomyr Zdomskyy
    Archive for Mathematical Logic, 2016, 55 : 767 - 784
  • [2] Remainders of topological and paratopological groups
    Xie, Li-Hong
    Lin, Shou
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (04) : 648 - 655
  • [3] A study of remainders of topological groups
    Arhangel'skii, A. V.
    FUNDAMENTA MATHEMATICAE, 2009, 203 (02) : 165 - 178
  • [4] Remainders in compactifications of topological groups
    Liu, Chuan
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (05) : 849 - 854
  • [5] A note on topological groups and their remainders
    Peng, Liang-Xue
    He, Yu-Feng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (01) : 197 - 214
  • [6] A note on topological groups and their remainders
    Liang-Xue Peng
    Yu-Feng He
    Czechoslovak Mathematical Journal, 2012, 62 : 197 - 214
  • [7] A theorem on remainders of topological groups
    Arhangel'skii, A. V.
    van Mill, J.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 220 : 189 - 192
  • [8] Remainders of topological groups and of their subspaces
    Arhangel'skii, Alexander Vladimirovich
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2008, 61 (01): : 5 - 8
  • [9] Two types of remainders of topological groups
    Arhangel'skii, A., V
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (01): : 119 - 126
  • [10] LOCAL PROPERTIES ON THE REMAINDERS OF THE TOPOLOGICAL GROUPS
    Lin, Fucai
    KODAI MATHEMATICAL JOURNAL, 2011, 34 (03) : 505 - 518