Automated Water Classification in the Tibetan Plateau Using Chinese GF-1 WFV Data

被引:4
|
作者
Zhang, Guoqing [1 ]
Zheng, Guoxiong [1 ]
Gao, Yang [1 ]
Xiang, Yang [1 ]
Lei, Yanbin [1 ]
Li, Junli [2 ]
机构
[1] Chinese Acad Sci, Inst Tibetan Plateau Res, Bldg 3,Courtyard 16,Lincui Rd, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
INDEX NDWI; LAKES; DELINEATION; IMPROVEMENT; TM;
D O I
10.14358/PERS.83.7.509
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The unique climate and topography of the Tibetan Plateau produce an abundant distribution of lakes. These lakes are important indicators of climate change, and changes in lake area have critical implications for water resources and ecological conditions. Lake area change can be monitored using the huge sets of high-resolution remote sensing data available, but this demands an automatic water classification system. This study develops an algorithm for automatic water classification using Chinese GF-1 (or Gaofen-1) wide-field-of-view (WFV) satellite data. The original GF-1 WFV data were automatically preprocessed with radiometric correction and orthorectification. The single-band threshold and two global-local segmentation methods were employed to distinguish water from non-water features. Three methods of determining the optimal thresholds for normalized difference water index (NDWI) images were compared: Iterative Self Organizing Data Analysis Technique (ISODATA); global-local segmentation with thresholds specified by stepwise iteration; and the Otsu method. The water classification from two steps of globallocal segmentations showed better performance than the single-band threshold and ISODATA methods. The GF-1 WFVbased lake mapping across the entire Tibetan Plateau in 2015 using the global-local segmentations with thresholds from the Otsu method showed high quality and efficiency in automatic water classification. This method can be extended to other satellite datasets, and makes the high-resolution global monitoring and mapping of lakes possible.
引用
收藏
页码:509 / 519
页数:11
相关论文
共 50 条
  • [31] GF-1 WFV surface reflectance product in China’s land area
    She W.
    Zhang Z.
    Peng Y.
    He G.
    Long T.
    Wang G.
    National Remote Sensing Bulletin, 2023, 27 (09) : 2206 - 2218
  • [32] Consistency analysis of surface reflectance and NDVI between GF-4/PMS and GF-1/WFV
    Sun Y.
    Qin Q.
    Ren H.
    Zhang T.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (09): : 167 - 173
  • [33] 基于GF-1/WFV时间序列的葡萄遥感识别
    赵希妮
    璩向宁
    王磊
    刘雅清
    许兴
    河南农业科学, 2019, 48 (03) : 153 - 160
  • [34] GF-1 WFV影像的中小流域洪涝淹没水深监测
    沈秋
    高伟
    李欣
    梁益同
    周月华
    遥感信息, 2019, 34 (01) : 87 - 92
  • [35] GF-1卫星WFV影像几何定位稳定性研究
    韩杰
    谢勇
    测绘通报, 2018, (02) : 50 - 54
  • [36] 利用Landsat 7与GF-1 WFV影像反演地表温度
    符宝玲
    琚锋
    赵伟忠
    许星
    测绘通报, 2021, (11) : 124 - 127
  • [37] Reconstruction of Daily 30 m Data from HJ CCD, GF-1 WFV, Landsat, and MODIS Data for Crop Monitoring
    Wu, Mingquan
    Zhang, Xiaoyang
    Huang, Wenjiang
    Niu, Zheng
    Wang, Changyao
    Li, Wang
    Hao, Pengyu
    REMOTE SENSING, 2015, 7 (12) : 16293 - 16314
  • [38] 基于GF-1 WFV数据森林叶面积指数估算
    李晓彤
    覃先林
    刘树超
    孙桂芬
    刘倩
    自然资源遥感, 2019, 31 (03) : 80 - 86
  • [39] GF-1 WFV Surface Reflectance Quality Evaluation in Countries along "the Belt and Road"
    Ding, Yaozong
    Gu, Xingfa
    Liu, Yan
    Zhang, Hu
    Cheng, Tianhai
    Li, Juan
    Wei, Xiangqin
    Gao, Min
    Liang, Man
    Zhang, Qian
    REMOTE SENSING, 2023, 15 (22)
  • [40] Inversion of Chlorophyll-a Concentrations in Chaohu Lake Based on GF-1 WFV Images
    Peng, Jun
    Chen, Bo
    IEEE ACCESS, 2024, 12 : 24791 - 24802