Sentinel-1 Spatially Varying Maximum-Likelihood Coherent Change Detection

被引:0
|
作者
Martin, J. C. [1 ,2 ]
Dobbs, K. [1 ,3 ]
Koehler, F. W. [1 ]
机构
[1] Natl Geospatial Intelligence Agcy, Washington, DC USA
[2] Univ Oklahoma, Adv Radar Res Ctr, Norman, OK 73019 USA
[3] Univ Kansas, Kansas Appl Remote Sensing Program, Lawrence, KS 66045 USA
关键词
sentinel; coherent change detection (CCD); maximum-likelihood coherent change detection (CRCD); flood mapping; remote sensing;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional sample complex correlation change detection (CCD) for synthetic aperture radar decorrelates and thus exhibits false change in areas of low clutter-to-noise power ratio. The complex reflectance change detection (CRCD) maximum likelihood estimator uses a noise power estimate for each SAR image to lower false change. This paper extends the CRCD metric to use spatially varying noise power estimates. The Sentinel-1 SAR constellation is a publicly available data source operating in an interferometric mode with a wide 250km swath width. The noise power varies significantly across each Sentinel-1 image. The CRCD estimate with spatially varying noise (SV-CRCD) is applied to Sentinel-1 flood mapping. Accuracy improvements are demonstrated over CCD due to SV-CRCD rejecting false change in regions of low return.
引用
收藏
页码:1234 / 1238
页数:5
相关论文
共 50 条
  • [21] Maximum-likelihood coherent-state quantum process tomography
    Anis, Aamir
    Lvovsky, A. I.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [22] A fast algorithm for maximum-likelihood imaging with coherent speckle measurements
    Schulz, TJ
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL I, 1997, : 679 - 682
  • [23] Maximum-likelihood phase and channel estimation for coherent optical OFDM
    Shieh, W.
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (5-8) : 605 - 607
  • [24] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [25] On Maximum-Likelihood Decoding of Time-Varying Trellis Codes
    Li, Wenhui
    Sidorenko, Vladimir
    Jerkovits, Thomas
    Kramer, Gerhard
    [J]. 2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 104 - 109
  • [26] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965
  • [27] ASYMPTOTIC DISTRIBUTIONS OF MAXIMUM-LIKELIHOOD TESTS FOR CHANGE IN THE MEAN
    GOMBAY, E
    HORVATH, L
    [J]. BIOMETRIKA, 1990, 77 (02) : 411 - 414
  • [28] COHERENCE CHANGE DETECTION FOR SENTINEL-1 SAR: METHODS AND APPLICATIONS
    Monti-Guarnieri, Andrea
    Brovelli, Maria Antonia
    d'Alessandro, Mauro Mariotti
    Manzoni, Marco
    Molinari, Monia Elisa
    Oxoli, Daniele
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 64 - 67
  • [29] Penalized maximum-likelihood image reconstruction for lesion detection
    Qi, Jinyi
    Huesman, Ronald H.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (16): : 4017 - 4029
  • [30] ALTERNATIVE ALGORITHM FOR MAXIMUM-LIKELIHOOD DOA ESTIMATION AND DETECTION
    SWINDLEHURST, A
    [J]. IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 1994, 141 (06) : 293 - 299